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Introduction 

When Archimedes shouted Eureka, “I have found it”, he was experiencing self-

consciousness of creativity:  he became aware and excited that he had produced a new 

and valuable idea.   Understanding this phenomenon is the ultimate challenge for 

cognitive science, because it requires simultaneous solution of three of its major 

problems:  the nature of the self, consciousness, and creativity.  This chapter will argue 

that all three problems have the same solution based on three fundamental brain 

mechanisms:  neural representation, recursive binding, and interactive competition.    

Creative intuition is not a mysterious process of divine inspiration or Platonic 

apprehension of ideas, but rather the result of identifiable neural processes that operate in 

all humans.     These processes are mechanistic, in that they result from the interactions of 

parts that produce regular changes (see e.g. Bechtel, 2008).  

 The historical record is insufficient to determine whether Archimedes really did 

shout Eureka (when taking a bath gave him an idea for measuring the volume of irregular 

solids), but there are undoubtedly real examples.  For example, Darwin (1987) recorded 

in his notebook his realization in 1838 that biological evolution could result from natural 

selection among competing organisms.  Many of us have experienced lesser moments of 

illumination with the same cognitive and emotional structure.   For example, here is how 

I got the idea for my theory of explanatory coherence (Thagard 1989, 1992).    On a 
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Saturday night in spring of 1987, I was in a movie theatre watching a boring movie, 

Beverly Hills Cop 2.  For the previous few weeks, I had been excitedly programming a 

neural network model based on the insight of my collaborator Keith Holyoak that 

analogical mapping  might be a process of parallel constraint satisfaction (Holyoak and 

Thagard, 1989).   The movie was tedious, so I got to thinking about how well the 

computer program was working and wondering what other problems might be amenable 

to similar techniques.    Suddenly it occurred to me that the main problem of my PhD 

thesis, evaluation of scientific theories, might also be a matter of satisfying multiple 

constraints.   That evening and the next day, I worked out the details.   A creative 

intuition concerning the connection between analogy and explanatory inference provided 

me with a new theory and computational model of explanatory coherence, generating my 

excited Eureka reaction.    

Before getting into the details of the neural mechanisms that I think are 

responsible for such reactions, let me deal with some terminological preliminaries.     I 

take intuitions to be conscious realizations that result from unconscious processes hard to 

identify.  An intuition is something that pops into your head in a much less deliberative 

manner than the results of a verbal argument.   I take intuitions to be creative if the 

realizations they produce are both new and valuable.  Many characterizations of 

creativity have been given (e.g. Boden, 2004;  Kaufman & Sternberg, 2010), but they all 

boil down to the recognition that creative leaps are both new (novel, surprising, original, 

etc.) and valuable (important, useful, appropriate, etc.).    Hence a creative intuition is a 

suddenly conscious realization concerning something that is new and valuable.  
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Many writers on creativity have seen it as resulting from combinations of 

previously unconnected mental representations (e.g. Boden, 2004; Koestler, 1967; 

Mednick, 1962; Stewart, 1792; Thagard 1988).   Evidence for this claim is usually 

anecdotal, but examination of 200 examples of scientific discovery and technological 

invention revealed  combinations required for all 200 breakthroughs (Thagard, 2012).   A 

mental representation is a structure or process in the mind that stands for something.  

This chapter begins with an outline of an emerging theory of mental 

representations as patterns of activity in populations of neurons.  Then it describes current 

views about how such representations can be combined into new ones by processes of 

binding that are performed by neural operations, resulting in high-level neural 

representations that Chris Eliasmith (forthcoming) calls semantic pointers.   Such 

representations are usually unconscious but they can become conscious through a process 

of interactive competition among them, with the most important of them entering 

awareness.   On this view, creative intuition is the result of competition between semantic 

pointers that are formed by binding other representations.   In a slogan:   

Eureka = representation + binding + competition.      

 Neural Representation 

The most familiar kinds of representations are linguistic ones such as words and 

sentences.    From a cognitive perspective, concepts are mental representations on the 

same scale as words, and propositions are mental representations on the same scale as 

sentences:   propositions are formed out of concepts just as sentences are formed out of 

words.   Mental representations, however, are not restricted to linguistic formats, as 

people are also capable of many kinds of images corresponding to different sensory 
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modalities, including vision, sound, touch, taste, smell, pain, and muscular motion 

(kinesthesia).   There is much evidence, at least for visual representations, that these 

kinds of imagery cannot be reduced to verbal structures (Kosslyn, Ganis, and Thompson, 

2003).   

A unified account of mental representation can be given in terms of neural 

networks, although early accounts of artificial neural networks were insufficient to 

capture the full representational power of human brains.   Simple connectionist networks 

consisted of neuron-like units that correspond to whole concepts or propositions.    Like 

neurons, such units are connected to each other by excitatory and inhibitory links, and 

processing occurs by spreading of activation among the units based on the connections 

they have to each other.      Although there may be some neurons in the brain that respond 

to specific stimuli, most representations are thought to be distributed among thousands or 

millions of neurons.  Hence learning methods that produce distributed representations in 

artificial neural networks were a significant advance (Rumelhart and McClelland, 1986).   

The resulting PDP (parallel distributed processing) networks, however, were still limited 

in their ability to represent linguistically complex information, such as the proposition 

that if a woman loves a man, then the man may or may not love the woman.   

 To overcome this problem, techniques were developed to enable complex verbal 

information to be represented in vectors, which can be lists of numbers such as (.2, .5, .8 

…).    A vector can capture the activation of a whole set of neurons:  in the example just 

given, the first number stands for the relative firing rate of neuron 1 equal to 20% of 

capacity, the second for the firing rate of neuron 2, and so on.   If a neuron is capable of 

firing 100 times per second, then .2 indicates that it is firing 20 times per second.  Hence 
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the mathematical objects called vectors can provide a simple approximation to 

populations of neurons, but more complex approximations with spiking neurons are 

described below.    Paul Smolensky (1990) and Tony Plate (2003) developed powerful 

methods for translating complex verbal information into vectors that are built up out of 

other vectors (for a tutorial on how this works, see Eliasmith and Thagard, 2001).    

Hence neural networks based on these kinds of vector constructions do not have the 

representational limitations of previous connectionist and PDP approaches.      

Eliasmith and Anderson (2003) showed how vectors can be represented in 

populations of biologically realistic neurons.   The activity of neurons in connectionist 

and PDP models was limited to activation, the rate of firing.   Real neurons, however, 

carry information not just by their rate of firing, but also by their pattern of firing, which 

in this context is usually called spiking.   For example, here are two patterns of firing that 

both have the same rate, but different patterns:  (fire, rest, fire, rest …) vs. (fire, fire, rest, 

rest, …).   Spiking neurons have significantly enhanced representational and 

computational power compared to rate neurons (Maass, 1999).    Groups of neurons need 

to work together with temporal coordination, just as musicians in a band need to interact 

and coordinate to produce an effective song.  

Because we now have computational neural network models that closely mimic 

the operations of the brain, I think the best current account of mental representations is 

that they consist of patterns of spiking activity in populations of millions of neurons.  

This account can accommodate both information that is verbal and information from all 

sensory modalities, and shows how these forms of information can interact via the same 

processing format of neuronal spiking resulting from synaptic connections.    Emotional 
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information can also be captured as spiking activity in populations of neurons, as will be 

described below.   

In order to use this account of neural representation as the basis of a theory of 

creative intuition, we need to show that it can handle all the components of self-

consciousness of creativity, including what is discovered, the self that did the 

discovering, and the emotion that accompanies realization of the accomplishment.   

Building up such complex representations requires the process of binding.         

Recursive Binding  

The importance of binding of representations in cognitive processing is evident in 

basic operations of vision and language (Revonsuo, 2009).    When you see an apple, you 

do not see its color and shape as independent, but rather as bound together as properties 

of a single object. Similarly, when you process a simple sentence such as “Eve ate the 

apple”, you need to bind the action of eating with the agent Eve and the object apple.  

Binding also makes possible the mingling of modalities, as when you coordinate the color 

and shape of an apple with its taste and smell, and when you verbally describe the taste 

and smell.  Human mental representation is multimodal, including: words and other 

verbal representations built from them; sensory representations such as pain, vision, 

hearing, touch, smell, taste, and kinesthesia; and emotions, which synthesize cognitive 

appraisals and bodily perceptions (Thagard and Aubie, 2008).   Without binding, thinking 

would be an overwhelming jumble of unconnected representations incapable of 

producing thought and action.   

Any animal with a brain and sensory system presumably has a binding 

mechanism, but it takes a large brain with many interconnected neurons to be capable of 
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repeated, embedded bindings, which I will call recursive bindings:  bindings of bindings 

of bindings.    Human language can manage  many layers of recursive binding, as in the 

song “There was an old woman who swallowed a cow to catch the goat to catch the cat to 

catch the bird to catch the spider that wriggled and jiggled and tickled insider her.”    

Recursive binding is evident in Eureka phenomena that require combining self, 

discovery, and emotions, where each of these involves a binding of bindings.   For 

example, Archimedes’s “I found it”  requires binding of the action of finding with the 

agent himself and the discovery concerning using buoyancy to measure volume of  an 

irregular piece of metal.  I will return to the question of self-representation in a later 

section.   

How binding works is relatively clear in formal logic and linguistics, but these 

deal only with syntactic structures, not with the full range of representations that are part 

of human thought.   How does the brain bind together representations when these are 

considered as patterns of activation in populations of  spiking neurons?   There are 

currently two candidate accounts of neural binding:  synchrony and convolution.  

Many cognitive scientists have endorsed the view that the brain performs binding 

by synchronizing the firing of neurons in different populations (see, for example Engel et 

al., 1999; Hummel and Holyoak, 2003).   Suppose, for example, that red is represented 

by neurons firing in one population, and apple is represented by firing of neurons in 

another population.   Then the binding red apple can result from coordination of firing in 

neurons in the two populations, just as two bands could listen to each other and start 

playing the same song together.   It is not obvious, however, that synchrony is the correct 

or only mechanism for neural binding, for both empirical and theoretical reasons.  
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Whereas neural oscillations undoubtedly occur in brains systems as measured by 

electroencephalography, there is no direct evidence that the synchronization 

accomplished in these oscillations performs  binding.  Moreover, there are computational 

reasons for doubting that synchrony suffices for binding, having to do with the capacity 

of synchronizations to combine and take apart sufficiently complex representations 

(Stewart and Eliasmith, 2009; Thagard and Stewart, 2011). 

Convolution is an alternative mechanism that Plate (2003) applied to vectors, 

which I explained earlier as lists of numbers.   Any kind of representation can be 

translated into a vector.   For example the word “cat” might be represented by the three-

dimensional vector (3, 1, 20) because it contains the third, first, and twentieth letters of 

the alphabet.   The picture on a high-definition television screen can be represented by a 

vector with 1920 X 1080 dimensions (more than 2 million), because such a screen has 

that number of pixels which have intensities describable by numbers.    The mathematical 

method that Plate employed for producing new vectors by combining old ones is rather 

technical, so I avoid explaining it here (see Plate, 2003;  Eliasmith and Thagard, 2001; 

Thagard and Stewart, 2011).      

Instead, let me provide some metaphors that I hope will give at least a rough 

impression of how this kind of convolution works.    Convolution of representations is 

something like braiding hair, which typically combines three separate strands.    The 

strands are woven together into a single strand which looks different from the original 

hair, but which can eventually be unbraided to return the hair to its original shape.   

Similarly, convolution takes two or more vectors and “braids” them into a new vector 

that can operate as a whole and can also, when desired, be unbraided into the vectors that 
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compose it.   For vectors, this process of deconvolution is only approximate in that the 

vectors that result from taking the convolved vector apart are not exactly the same as the 

ones that put it together.     

There is currently no direct evidence that convolution is the mechanism used by 

the brain to perform binding of representations, but it is theoretically powerful for 

explaining how binding might work for any kind of representation for which there is a 

corresponding vector.   Eliasmith (2005, forthcoming) developed a general method for 

enabling convolution of vectors to be performed by spiking neurons operating on neural 

representations.  So there are now running computational models of spiking neurons that 

perform convolution with all the generality and efficiency needed to account for known 

kinds of binding.   It is of course possible that the brain also uses synchronization and 

other unknown mechanisms for performing binding:  biological systems often have 

several ways of performing important functions.  But from now on I will assume that 

convolution is the most important mechanism for binding representations.    We can then 

take advantage of a recent discovery by Chris Eliasmith (forthcoming) that convolution 

can be used to build powerful representations he calls semantic pointers.      

Semantic Pointers 

At the 2010 conference of the Cognitive Science Society, the ten winners of the 

Rummelhart prize to that date were asked to discuss the most important problems in 

cognitive science.  Several of them mentioned the problem of figuring out how billions of 

neurons in the human brain are capable of processing symbols of the sort that operate in 

human language and thought.    What brain processes produce concepts such as apple and 

meaningful sentences such as Eve ate the apple?   Eliasmith’s new idea of semantic 
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pointers seems to me to be the most plausible proposal to date for answering this 

fundamental question.   This idea is very useful for understanding the nature of concepts 

(Blouw, Solodkin, Eliasmith, and Thagard, forthcoming; Thagard, 2012, ch. 18),   

emotions (Thagard and Schröder, forthcoming), intentions (Schröder, Stewart, and 

Thagard, forthcoming), and behavioral priming (Schröder and Thagard, forthcoming). 

A mathematical treatment of semantic pointers can be given by interpreting them 

as vectors produced by convolution, but here I want to give a more qualitative and 

metaphorical explication that is accessible to non-mathematicians.   Semantic pointers are 

neural processes that (1) provide shallow meaning through symbol-like relations to the 

world and other representations, (2) expand to provide deeper meaning with relations to 

perceptual, motor, and emotional information, (3) support complex syntactic operations, 

and (4) help to control the flow of information through a cognitive system to accomplish 

its goals.  A semantic pointer consists of spiking patterns in a large population of neurons 

that provide a kind of compressed representation analogous to JPEG picture files or 

iTunes audio files.   Just as a JPEG file can be expanded to produce a picture and an 

iTunes audio file can be expanded to produce music, so the semantic pointer can be used 

as a whole unit but also can be expanded to carry all the meaning that goes with the 

multimodal information that went into it.  

The term “pointer” comes from computer science where it refers to a kind of data 

structure that gets its value from a machine address to which it points.   A semantic 

pointer is a neural process that compresses information in other neural processes to which 

it points and into which it can be expanded when needed.    For example, the concept 

apple can be understood as a semantic pointer consisting of spiking neurons that 
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compress, point to, and expand into other populations of spiking neurons that contain a 

wide range of information in various modalities such as vision and touch.   In 

mathematical terms, the semantic pointer achieves its compressed representation by being 

formed through the convolution of other representation, and decompression is 

accomplished by means of deconvolution.     

To use my earlier metaphor, the semantic pointer is the braid that results from 

weaving together several strands of information in different formats.  That metaphor is 

limited by the fact that braids do not have any dynamic function, so let me try a different 

one:  a semantic pointer is like a suitcase full of suitcases that can contain other suitcases.    

It is much more convenient to carry around a suitcase full of suitcases than a messy 

bunch of suitcases, but it is important that the big suitcase can be unpacked to find other 

suitcases that eventually can be unpacked to reveal contents such as clothes.     Similarly, 

semantic pointers provide convenient ways of carrying out important functions such as 

syntactic processing and inferences, but can be unpacked to reveal the sources of 

meaning arising from sensory and motor processes.  Semantic pointers are thus the most 

powerful kind of representations that result from recursive binding of neural 

representations.      

    It is plausible, therefore, that the thought Eureka! operated in Archimedes’ 

mind as a semantic pointer built out of semantic pointers for the self, the discovery he 

made, and his emotional reaction to it.   But I need to describe how self representations 

can be understood as semantic pointers. 

Semantic Pointers for the Self  
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The understanding of Eureka as a semantic pointer presumes that the I or self can 

be represented by a semantic pointer that is bound into the larger pointer for “I have 

found it.”   This interpretation runs counter to the two main ways in which philosophers 

have understood the self.    Idealist philosophers such as Plato and Kant have assumed 

that selves are transcendental, unified entities – souls.   In contrast, some naturalistic 

philosophers like Hume have been skeptical of the existence of the self,  viewing it as a 

misleading concoction from diverse kinds of experience.   Thinking of the self as 

represented by a semantic pointer shows how it can have both unity and diversity, 

although social and molecular mechanisms are relevant in addition to psychological and 

neural ones (Thagard, in press; Thagard and Wood, forthcoming).   

The unity comes from the fact that the semantic pointer representation of the “I” 

or “Paul Thagard” is sufficiently compressed that it can figure in syntactic structures like 

“I have found it” and “I am a cognitive scientist” as well as contributing to many kinds of 

inferences.   The diversity comes from the capacity of the pointer to decompress or 

unpack into many other kinds of information including current sensory experiences (I am 

listening to music), memories (I got my PhD at the University of Toronto),  and general 

concepts that apply to myself and others (I am a Canadian professor).  All these are 

bound together into the convenient unifying representation that the semantic pointer 

provides.  By virtue of the compressed representation that can be decompressed, the 

semantic pointer representation of self gets the convenient package that can be bound 

with actions and objects, but also carries the diverse range of information that comes 

from previous and current experience.   In mathematical terms, the self-representation is a 
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vector that can be manipulated as a whole but can also be deconvolved into the various 

vectors that were joined together to produce it by convolution.  

Despite this unity, the self-concept is malleable – changeable based on social 

context (Markus and Kunda, 1986).   People think of themselves in different ways 

depending on their social situations, for example as sociable while at a party but as 

introspective while reading a book.   Such malleability is naturally explained by noticing 

that context will activate different concepts associated with the self, bringing them to 

consciousness.   Similarly, it is an important ingredient of Eureka that it is a conscious 

experience.    Neural representation and recursive binding are powerful mechanisms for 

building semantic pointers, but we need a third mechanism to explain how such pointers 

enter consciousness. 

  Consciousness and Interactive Competition 

Psychologists and neuroscientists have long recognized that attention is a crucial 

part of conscious awareness.   At any moment, there are many events occurring in our 

environments and many kinds of information being processed in our brains.  Attention is 

limited, in that we can only be consciously aware of a few items at once.    Perhaps this 

limitation is a side effect of shortage of processing capacity in active memory resulting 

from the large number of neurons it takes to perform bindings, or perhaps the limitation is 

a biological adaptation that serves to focus humans and other organisms on actions 

needed for survival and reproduction.    Either way,  attention selects a small subset of 

candidate representations as sufficiently important to enter consciousness (Braun, 2009).    

It is widely maintained that attention functions by means of competition among 

representations (e.g. Desimone and Duncan, 1995; Maia and Cleeremans, 2005; Smith 
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and Kosslyn, 2007).   One way in which competition might work is if the brain contained 

a process that ranks each representation for importance and them picks the ones with the 

highest rankings.   A more neurologically plausible, parallel process is suggested by a 

connectionist mechanism of interactive competition that has been used to explain many 

psychological phenomena, including word recognition, concept application, and theory 

evaluation.  In this mechanism, there is no central ranker of representations, but rather a 

collection of neuron-like units that compete to have the highest activation by inhibiting 

each other as well as by being excited by inputs.   For example, suppose you are in a park 

and see an animal moving but are not sure from a brief glimpse whether it is a bird, 

squirrel, or cat.    Figure 1 shows a simplified neural network that takes sensory input 

between units representing these three interpretations and chooses the most plausible 

concept by means of a parallel process of interactive competition among the units.    

squirrel

bird cat
compete

sensory input

 

Figure 1. Neural network for competition between three concepts to 

determine which one best categorizes sensory input.   Solid lines are 

excitatory links, but dotted lines are inhibitory.   

Attention can operate by a similar process, except that the representations that 

compete need to be much more complex than the simple nodes in connectionist networks.   

The concept of bird or cat or squirrel that comes to conscious awareness carries with it a 
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large amount of meaning that arises through sensory information and connections with 

other concepts.   Eliasmith’s semantic pointer idea provides a plausible answer to how 

this might work, because concepts understood as semantic pointers decompress or unpack 

into patterns of neural activation with all the needed associations.    Similarly, if what 

comes to consciousness is a proposition such as “I have found it”,  then we can 

hypothesize that the semantic pointer representing this proposition managed to win a 

competition among various other thoughts that are also candidates for consciousness.  

Figure 2 shows how this might work, with the semantic pointer for Eureka winning out in 

the interactive competition over semantic pointers for two other thoughts (perhaps 

Archimedes thinking about the soap on his face, or about his family).   

 

Eureka!

thought 1 thought 2

I

found

solution

excitementI found 
solution

appraisal

body

bind

bindbind

compete

 

Figure 2.   The Eureka semantic pointer is formed by binding processes 

indicated by the straight lines (which can also be interpreted as excitatory 

links), and becomes conscious because of competition against other 
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semantic pointers carried out by inhibitory connections shown as dotted 

lines.     

Of course, the process in the brain is a lot more complicated than figure 2 

displays.   Each of the semantic pointers requires not just a single node, but a pattern of 

activation in large populations of neurons.   Inhibitory connections are not between single 

nodes, but between complexes of neurons.   Thagard and Aubie (2008) describe how the 

functions of simple connectionist networks including inhibition can be performed by 

larger, distributed populations of neurons.   Competition need not occur in a single brain 

area, although it is possible that it is facilitated by convergence zones (association areas) 

where different kinds of information are conveyed (Driver and Noesselt, 2008).   

Dehaenes (2009) proposes that there is a neuronal global workspace  for consciousness 

that is not a specific location in the brain but rather relies on cortical pyramidal neurons 

with long-distance connections.      

To sum up, Table 1 shows the three neural mechanisms that I conjecture are most 

important to creative intuition in the Eureka reaction. In the three mechanisms, the 

interactions of parts of increasing complexity produce increasingly complex emergent 

results, in an utterly non-mystical sense of emergence.    Emergent properties are ones 

possessed by the whole, not by the parts, and are not simple aggregates of the properties 

of the parts because they result from interactions of the parts (Bunge, 2003; Wimsatt, 

2007).  Of course there are other relevant mechanisms, such as the biochemical reactions 

involving proteins and messengers that operate within neurons and other cells.   At a 

much higher level, social mechanisms are also relevant, because interactions between 
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people such as conversation produce changes in attention relevant to consciousness and 

intuition.     

Parts Interactions Emergent result 

Neurons Excitation, inhibition, 

synaptic connections 

Representation by firing 

patterns 

Neural populations Recursive binding Semantic pointers 

Semantic pointers Interactive competition Conscious experience 

Table 1.  Three mechanisms for creative intuition.   

Objections  

Many philosophers and even some psychologists and neuroscientists would find it 

outrageous to suggest that an exalted phenomenon like self-consciousness of creativity 

could be identified with or explained by neural mechanisms.   I will now briefly consider 

four general objections to a neural explanation of creative intuition, concerning robots, 

category mistakes, conceivability, and what is it like to feel creative.  

My contention that creative intuition results from neural representation, recursive 

binding, and competition among semantic pointers may seem arbitrarily to rule out the 

possibility that non-human agents such as computers could turn out to have creative 

intuition.  Already there are computer programs capable of generating products that seem 

to be at least somewhat new and valuable (see Boden, 2004 and a 2009 issue of AI 

Magazine, vol. 30, no. 3,  for candidate examples).  The gap between humans and 

computers should close further as machines continue to increase in speed, memory, and 

software sophistication.   
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   I certainly do not intend to argue that it is impossible for machines to be 

creative, and have argued that are already robots capable of representing the world 

(Parisien and Thagard, 2008).    But the mechanisms by which they acquire and use these 

representations are very different from ones used by people, and I know of no current 

computers capable of building up representations of representations of representations by 

anything like the kind of recursive binding I have described as occurring by convolution.   

For example, Bayes nets are a powerful technology used in some of today’s best robots 

(Thrun, Burgard, and Fox, 2005), but I know of only one discussion of how a Bayes net 

can represent other Bayes nets (Glymour and Danks, 2007).  Moreoever, I am not aware 

of any analog of interactive competition in computer programs using Bayes nets.     

Therefore, although something like creativity might be developed by computers 

more flexible and intelligent than current ones, I expect that the creative intuitions that 

robots might have would be very different from the ones that are generated by human 

brains.   This difference has potentially large ethical consequences for the desirability of 

developing computers capable of intuitions, because their inclinations toward actions will 

likely be very different from humans:   computers lack the biological goals and emotional 

reactions that are an important part of human ethical intuition known as conscience 

(Thagard and Finn, 2011).    Computers may well someday have intuitions, but I would 

trust theirs even less than I do human intuitions (Thagard, forthcoming).  

A second more philosophical objection to ascribing self-consciousness and 

creativity to brains is that these properties belong to persons and it is a category mistake 

to attribute them to a particular part of the body (see Bennett, Dennett, Hacker, and 

Searle, 2007).    The history of science, however, provides ample evidence that categories 
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change as knowledge advances:  for example, we learned from Count Rumford that heat 

is a kind of motion, not a substance; and we learned from Charles Darwin that humans 

are a kind of animal, not specially created.    Similarly, evidence is mounting that 

creativity and self-consciousness are kinds of brain processes, not vague properties of 

vaguer entities called persons.  

Another standard move against naturalistic accounts of mental phenomena is 

arguments of philosophers such as Descartes (1980) and Chalmers (1996) concerning 

conceivability.   We can easily imagine, it is claimed, that there are beings capable of 

creative intuition that lack the mechanisms of neural representation, recursive binding, 

and competition among semantic pointers.  Hence these neural mechanisms are not 

essential to creative consciousness.   This argument has no force, however, for it would 

rule out many of the most important scientific discoveries (Thagard, 2010).    We can 

imagine that heat is not the motion of molecules, that lightning is not electrical discharge, 

and that humans are not animals evolved by natural selection.  But in all these cases, 

there is ample evidence from observation and experiment to conclude that imagination 

yields falsehoods.  Thought experiments intended to block evidence-based theoretical 

conclusions are prime examples of uncreative intuitions:  they serve purely to maintain 

ideas that are old and useless rather than new and valuable.     

 Finally, I need to address the standard philosophical argument that any neural 

account of the Eureka phenomenon leaves out a crucial aspect of consciousness:  what it 

feels like to have the self-conscious experience of Archimedes and other discoverers.   

Some philosophers even write of the “what-it-is-likeness” of experience, which they 

place beyond the reach of scientific explanation.   Lumping all the richness of conscious 
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experience into something ineffable is akin to the strategy of nineteenth century 

biologists to explain life in terms of some mysteriousness vital force.     Now we know 

that life is the result of many different mechanisms such as genetic transmission, 

metabolism, and cell division.   Similarly, I predict that the varieties of conscious 

experience will someday be recognized as the result of various mechanisms including the 

ones for representation, binding, and competition that I have been discussing.    For 

example, one of the important aspects of the Eureka feeling is the highly positive emotion 

of excitement.    Much is already known about how positive emotions arise from brain 

activity, so this aspect of what it is like to have self-consciousness of creativity is already 

well on its way to being explained (Thagard and Aube, 2008; Rolls, 2005).   It is 

reasonable to expect that other aspects of self-consciousness of creativity will also prove 

amenable to mechanistic explanation through advances in theoretical and experimental 

cognitive neuroscience.    Once what-is-it-likeness is broken down into its components, it 

becomes explainable rather than ineffable.      

General Discussion 

This chapter has proposed that creative intuition involves self-consciousness of 

creativity, and that three neural mechanisms – representation, binding, and competition -

are at the core of self, consciousness, and creativity.    All require representation by 

populations of spiking neurons, binding of representations by a process like convolution 

into semantic pointers, and interactive competition among those pointers.   Numerous 

important issues remain, such as the empirical evidence for this account and its 

implications for the general question of when intuitions are rational.    
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At the empirical level, it is natural to be concerned about the extent of 

experimental evidence for the three mechanisms proposed here.   Ideally, it would be 

good to have both neurological evidence for the occurrence of the mechanisms in the 

brains of humans and other organisms, and psychological evidence concerning aspects of 

consciousness that are best explained by those mechanisms.  There is abundant 

experimental evidence supporting the idea that neural representations operate by 

populations of spiking neurons that become tuned to occurrences in the environment 

(Gerstner and Kistler, 2002); but I know of no direct tests of the idea that such 

representations get bound together by a process like convolution.      Similarly, although 

the process of competition among representations has often been used by psychologists to 

explain phenomena concerning attention, I have not seen any direct evidence based on 

observations of brains that support the existence of the mechanism.    There have been 

some recent brain scanning experiments observing the neural correlates of some simple 

insight phenomena (Kounios and Beeman, 2009), but their relevance to the more general 

question of creativity are not clear.    With respect to creative intuition,  theoretical 

neuroscience seems to be out in front of experimental neuroscience and psychology, but I 

hope that this gap will shrink through future research.   

It is widely believed that creative new ideas often occur to people when they are 

relaxing after pursuing difficult problems, as when Kekulé reported dreaming the 

structure of benzene.   The interactive competition view of consciousness might be able 

to explain this.  When you are working hard on a problem,  currently active ideas may 

suppress new semantic pointers that have been formed and prevent them from entering 

consciousness.    At leisure, however, you may not have such pressing thoughts, enabling 
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the new combination to enter consciousness.  Incubation is the process of unconscious 

combination of ideas (convolution of neural representations) eventually leading to 

awareness of discovery when problem-solving semantic pointers win the competition to 

become conscious.   

At the theoretical level, the triple mechanisms account needs to be related to other 

explanations of consciousness.  My proposal seems broadly compatible with 

philosophical accounts of consciousness in terms of higher order representation and 

perception (e.g. Carruthers, 2011), but is far more specific.   Similarly, the three 

mechanisms proposed might be understood as a mechanistic specification of global 

workspace theories of consciousness that have been popular among psychologists and 

neuroscientists (e.g. Dehaene, 2009), but a systematic comparison remains to be done.  

An open question is whether the view of consciousness as interactive competition among 

semantic pointers also applies to other domains of consciousness, such as sensory 

experience, verbal thinking, and emotions. 

I have proposed the three mechanisms of neural representation, recursive binding, 

and semantic pointer competition specifically to explain creative intuition, but would not 

hesitate to see them as important for intuition in general.    Whereas creative intuition 

primarily functions to generating hypotheses, intuition is sometimes defended as a basis 

for believing them.   For example, thought experiments that are used to produce intuitions 

are thought by some philosophers to contribute to the justification of theories in science 

as well as philosophy (Brown, 1991).       

If intuition were divine inspiration or Platonic grasping of eternal entities, then 

there might be some justification in taking intuition as probative rather than merely 
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suggestive.  But the three-mechanism account of intuition provides grounds for 

skepticism about the trustworthiness of intuitions.   I have no objections to the creative 

side of intuition, because its purpose is just to generate ideas that can then be tested for 

value.   But many ideas that initially seem to the inventor to be new and valuable 

eventually turn out be weak on novelty, importance, or both.  Similarly,  ideas that seem 

intuitive may just be the result of unconscious prejudices that emerge into consciousness 

with misleading force that is not commensurate with their value.    Such illusions are 

common in philosophy, in both the analytic and phenomenological traditions, where 

advocates defend their theories based on intuitions that derive from stories (grandiosely 

called thought experiments) that they themselves have made up to support their own 

view.    For critiques of the use of thought experiments in philosophy to generate 

intuitions that are mistaken for evidence, see Thagard (2010, forthcoming).  

I am not saying that intuitions and thought experiments are useless.     As many 

scientific cases show (e.g. Einstein thinking about relativity by imagining riding on a 

beam of light),  thought experiments can contribute to valuable scientific discoveries.  

Moreover, they are sometimes useful in identifying difficulties in alternative theories, as 

when Galileo showed a serious problem with the Aristotelian view that heavy objects fall 

faster than lighter ones by imagining the fall of a heavy object and a light one tied 

together.    Good scientific thought experiments stimulate inquiry, whereas philosophical 

intuitions often serve to block inquiry.   There is no way of telling from the conscious 

aspects of intuition whether it is based on reliable evidence or feeble prejudice; hence 

intuitions should always be subject to rational scrutiny rather than taken at face value.  In 

some cases, such as when an intuition results from large amounts of experience that 
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corresponds to reality, intuitions may in fact be veridical, but that can only be determined 

by subsequent investigation.    My recommendation is not to trust anyone’s intuitions, 

including your own, until you can evaluate the evidence that underlies them.   Otherwise, 

the representations, bindings, and competition that produce the intuition may be 

misleading.     Intuitions can just as easily result from motivated and fear-driven inference 

where your emotions distort your beliefs as from reliable patterns of inference (Thagard 

and Nussbaum, forthcoming).      

To conclude, let me observe that the explanation of creative intuition in terms of 

neural mechanisms makes it clear why creativity has often been thought of as a divine or 

mysterious process.  Common sense and introspection can tell us nothing about 

mechanisms like spiking neurons, binding, and competition, so it is not surprising that 

pre-scientific explanations of creativity have looked to supernatural factors such as the 

Muses and Platonic apprehension of ideas.    Fortunately, because of empirical and 

theoretical advances in neuroscience, the veil of mystery is rapidly lifting from the face 

of creativity, and intuition can be elevated from the ineffable to the comprehensible.   

Self-consciousness of creativity in the Eureka experience is becoming a natural 

phenomenon open to mechanistic explanation.    
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