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Coherence as Constraint 
Satisfaction 

PAUL THAGARD AND KARSTEN VERBEURGT 

University of Waterloo 

This paper provides a computational characterization of coherence that 
applies to a wide range of philosophical problems and psychological phenom- 
ena. Maximizing coherence is a matter of maximizing satisfaction of a set of 
positive and negative constraints. After comparing five algorithms for maxi- 
mizing coherence, we show how our characterization of coherence overcomes 
traditional philosophical objections about circularity and truth. 

1 INTRODUCTION 

The concept of coherence has been important in many areas of philosophy and psychology. 

In metaphysics, there have been advocates of a coherence theory of truth. More commonly, 

in epistemology there have been advocates of coherence theories of epistemic justification, 
some of them emphasizing explanatory coherence. In logic, some theorists have contended 
that principles of reasoning are to be defended not on the basis of their a priori validity but 

on the basis of their coherence with inferential practice. Similarly, some ethical theorists 

have sought to defend general ethical principles on the basis of their coherence with partic- 

ular ethical judgments, where coherence is judged through a process of achieving reflective 

equilibrium. Psychologists have also employed the concept of coherence to help under- 
stand processes as diverse as word perception, discourse comprehension, analogical map- 

ping, cognitive dissonance, and interpersonal impression formation. 

But what is coherence? Given a large number of elements (propositions, concepts, or 

whatever) that are coherent or incoherent with each other in various ways, how can we 
accept some of these elements and reject others in a way that maximizes coherence? How 
can coherence be computed? 

Section 2 of this paper offers a simple characterization of coherence problems that is 
general enough to apply to a wide range of current philosophical and psychological appli- 
cations summarized in section 3. Maximizing coherence is a matter of maximizing satis- 
faction of a set of positive and negative constraints. Section 4 describes five algorithms for 
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computing coherence, including a connectionist method from which our characterization 

of coherence was abstracted. Coherence problems are inherently intractable computation- 

ally, in the sense that, under widely held assumptions of computational complexity theory, 

there are no efficient (polynomial-time) procedures for solving them. There exist, however, 

several effective approximation algorithms for maximizing coherence problems, including 

one using connectionist (neural network) techniques. Different algorithms yield different 

methods for measuring coherence discussed in section 5. We conclude by showing in sec- 

tion 6 that our methods of computing coherence overcome the traditional philosophical 

objection that coherence theories are circular and ineffective in achieving truth. 

This paper is intended to make contributions to philosophy, psychology, and computer 

science. The notion of coherence has been widely used in philosophy, particularly in ethics 

and epistemology, but has been left completely vague. In contrast, we present a character- 

ization of coherence which is as mathematically precise as the tools of deductive logic and 

probability theory more commonly used in philosophy. The psychological contribution of 

this paper is that it provides an abstract formal characterization that unifies numerous psy- 

chological theories. We provide a new mathematical framework that encompasses con- 

straint satisfaction theories of hypothesis evaluation, analogical mapping, discourse 

comprehension, impression formation, and so on. Previously, these theories shared an 

informal characterization of cognition as parallel constraint satisfaction, along with use of 

connectionist algorithms to perform constraint satisfaction. Our new precise account of 

coherence makes clear what these theories have in common besides connectionist imple- 

mentations. Moreover, our mathematical characterization generates results of considerable 

computational interest, including proof that the coherence problem is NP-hard and devel- 

opment of algorithms that provide non-connectionist means of computing coherence. 

Finally, in its display of interconnections among important problems in philosophy, psy- 

chology, and computer science, this paper illustrates the multidisciplinary nature of cogni- 

tive science. 

2 COHERENCE AS CONSTRAINT SATISFACTION 

When we make sense of a text, a picture, a person, or an event, we need to construct an 

interpretation that fits with the available information better than alternative interpretations. 

The best interpretation is one that provides the most coherent account of what we want to 

understand, considering both pieces of information that fit with each other and pieces of 

information that do not fit with each other. For example, when we meet unusual people, we 

may consider different combinations of concepts and hypotheses that fit together to make 

sense of their behavior. 

Coherence can be understood in terms of maximal satisfaction of multiple constraints, 

in a manner informally summarized as follows: 

1. Elements are representations such as concepts, propositions, parts of images, goals, 
actions, and so on. 
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2. Elements can cohere (fit together) or incohere (resist fitting together). Coherence rela- 

tions include explanation, deduction, facilitation, association, and so on. Incoherence 
relations include inconsistency, incompatibility, and negative association. 

3. If two elements cohere, there is a positive constraint between them. If two elements 

incohere, there is a negative constraint between them. 

4. Elements are to be divided into ones that are accepted and ones that are rejected. 

5. A positive constraint between two elements can be satisfied either by accepting both 

of the elements or by rejecting both of the elements. 

6. A negative constraint between two elements can be satisfied only by accepting one 

element and rejecting the other. 

7. The coherence problem consists of dividing a set of elements into accepted and 

rejected sets in a way that satisfies the most constraints. 

Examples of coherence problems are given in section 2. 

More precisely, consider a set E of elements which may be propositions or other repre- 

sentations. Two members of E, el and e2, may cohere with each other because of some rela- 

tion between them, or they may resist cohering with each other because of some other 

relation. We need to understand how to make E into as coherent a whole as possible by tak- 

ing into account the coherence and incoherence relations that hold between pairs of mem- 

bers of E. To do this, we can partition E into two disjoint subsets, A and R, where A contains 

the accepted elements of E, and R contains the rejected elements of E. We want to perform 

this partition in a way that takes into account the local coherence and incoherence relations. 

For example, if E is a set of propositions and et explains e2, we want to ensure that if elis 

accepted into A then so is e2. On the other hand, if el is inconsistent with e3, we want to 

ensure that if er is accepted into A, then e3 is rejected into R. The relations of explanation 

and inconsistency provide constraints on how we decide what can be accepted and rejected. 

More formally, we can define a coherence problem as follows. Let E be a finite set of 

elements {e;} and C be a set of constraints on E understood as a set { (ei, ej)} of pairs of ele- 

ments of E. C divides into C+, the positive constraints on E, and C-, the negative con- 

straints on E. With each constraint is associated a number u’, which is the weight (strength) 

of the constraint. The problem is to partition E into two sets, A and R, in a way that maxi- 

mizes compliance with the following two coherence conditions: 

1. if (ei, ei) is in C+, then e; is in A if and only if fi is in A. 

2. if (ei, e;) is in C-, then ei is in A if and only if ej is in R. 

Let W be the weight of the partition, that is, the sum of the weights of the satisfied con- 

straints. The coherence problem is then to partition E into A and R in a way that maximizes 

W. (The appendix gives a graph theoretic definition of the coherence problem.) Because c1 

coheres with b is a symmetric relation, the order of the elements in the constraints does not 

matter. Intuitively, if two elements are positively constrained, we want them either to be 

both accepted or both ejected. On the other hand, if two elements are negatively con- 

strained, we want one to be accepted and the other rejected. Note that these two conditions 

are intended as desirable results, not as strict requisites of coherence: the partition is 

intended to maximize compliance with them, not necessarily to ensure that all the con- 

straints are simultaneously satisfied, since simultaneous satisfaction may be impossible. 
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The partition is coherent to the extent that A includes elements that cohere with each other 

while excluding ones that do not cohere with those elements. We can define the coherence 
of a partition of E into A and R as W, the sum of the weights of the constraints on E that 

satisfy the above two conditions. Coherence is maximized if there is no other partition that 

has greater total weight. This abstract characterization applies to the primary philosophical 

and psychological discussions of coherence. ’ To show that a given problem is a coherence 

problem in this sense, it is necessary to specify the elements and constraints, provide an 

interpretation of acceptance and rejection, and show that solutions to the given problem do 

in fact involve satisfaction of the specified constraints. 

3 COHERENCE PROBLEMS 

In coherence theories of truth, the elements are propositions, and accepted propositions are 

interpreted as true, while rejected propositions are interpreted as false. Advocates of coher- 

ence theories of truth have often been vague about the constraints, but entailment is one 

relation that furnishes a positive constraint and inconsistency is a relation that furnishes a 

negative constraint (Blanshard, 1939). Whereas coherence theories of justification inter- 

pret “accepted” as “judged to be true,“* coherence theories of truth interpret “accepted” as 

“true.” Epistemic justification is naturally described as a coherence problem as specified 

above. Here the elements E are propositions, and the positive constraints can be a variety 
of relations among propositions, including entailment and also more complex relations 

such as explanation.3 The negative constraints can include inconsistency, but also weaker 

constraints such as competition. Some propositions are to be accepted as justified, while 

others rejected. Thagard’s (1989, 1992~) theory of explanatory coherence shows how con- 

straints can be specified. In that theory, positive constraints arise from relations of expla- 

nation and analogy that hold between propositions, and negative constraints arise either 

because two hypotheses contradict each other or because they compete with each other to 

explain the same evidence. 

Irvine has argued that the justification of mathematical axioms is similarly a matter of 

coherence (Irvine, 1994; see also Kitcher, 1983, and Thagard, Eliasmith, Rusnock, and 
Shelley, forthcoming). Axioms are accepted not because they are a priori true, but because 
they serve to generate and systematize interesting theorems, which are themselves justified 
in part because they follow from the axioms. Goodman contended that the process of jus- 
tification of logical rules is a matter of making mutual adjustments between rules and 
accepted inferences, bringing them into conformity with each other (Goodman, 1965; 
Thagard, 1988, ch. 7). Logical justification can then be seen as a coherence problem: the 
elements are logical rules and accepted inferences; the positive constraints derive from jus- 
tification relations that hold between particular rules and accepted inferences; and the neg- 
ative constraints arise because some rules and inferences are inconsistent with each other. 

Similarly, Rawls (197 1) argued that ethical principles can be revised and accepted on the 
basis of their fit with particular ethical judgments. Determining tit is achieved by adjusting 
principles and judgments until a balance between them, reflective equilibrium, is achieved. 
Daniels (1979) advocated that wide reflective equilibrium should also require taking into 
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account relevant empirical background theories. Brink (1989) defended a theory of ethical 

justification based on coherence between moral theories and considered moral beliefs. Swan- 

ton (1992) proposed a coherence theory of freedom based on reflective equilibrium consid- 

erations. As in Goodman’s view of logical justification, the acceptance of ethical principles 

and ethical judgments depends on their coherence with each other. Coherence theories of 

law have also been proposed, holding the law to be the set of principles that makes the most 

coherent sense of court decisions and legislative and regulatory acts (Raz, 1992). 

Thagard and Millgram (1995; Millgram and Thagard, 1996) have argued that practical 

reasoning also involves coherence judgments about how to fit together various possible 

actions and goals. On their account, the elements are actions and goals, the positive con- 

straints are based on facilitation relations (action A facilitates goal G), and the negative con- 

straints are based on incompatibility relations (you cannot go to Paris and London at the 

same time). Deciding what to do is based on inference to the most coherent plan, where 

coherence involves evaluating goals as well as deciding what to do. Hurley (1989) has also 

advocated a coherence account of practical reasoning, as well as ethical and legal reasoning. 

In psychology, various perceptual processes such as stereoscopic vision and interpreting 

ambiguous figures are naturally interpreted in terms of coherence and constraint satisfac- 

tion (Mat-r and Poggio, 1976; Feldman, 1981). Here the elements are hypotheses about 

what is being seen, and positive constraints concern various ways in which images can be 

put together. Negative constraints concern incompatible ways of combining images, for 

example seeing the same part of an object as both its front and its back. Word perception 

can be viewed as a coherence problem in which hypotheses about how letters form words 

can be evaluated against each other on the basis of constraints on the shapes and interrela- 

tions of letters (McClelland & Rumelhart, 198 1). Kintsch (1988) described discourse com- 

prehension as a problem of simultaneously assigning complementary meanings to different 

words in a way that forms a coherent whole. For example, the sentence “the pen is in the 

bank’ can mean that the writing implement is in the financial institution, but in a different 

context it can mean that the animal containment is in the side of the river. In this coherence 

problem, the elements are different meanings of words and the positive constraints are 

given by meaning connections between words like “bank” and “river.” Other discussions 

of natural language processing in terms of parallel constraint satisfaction include St. John 

and McClelland (1992) and MacDonald, Pearlmutter, and Seidenberg (1994). Analogical 

mapping can also be viewed as a coherence problem, in which two analogs are put into cor- 

respondence with each other on the basis of various constraints such as similarity, struc- 

ture, and purpose (Holyoak and Thagard, 1989, 1995). 

Coherence theories are also important in recent work in social psychology. Read and 

Marcus-Newhall (1993) have experimental results concerning interpersonal relations that 

they interpret in terms of explanatory coherence. Shultz and Lepper (1996) have reinter- 

preted old experiments about cognitive dissonance in terms of parallel constraint satisfac- 

tion. The elements in their coherence problem are beliefs and attitudes, and dissonance 

reduction is a matter of satisfying various positive and negative constraints. Kunda and 

Thagard (1996) have shown how impression formation, in which people make judgments 

about other people based on information about stereotypes, traits, and behaviors can also 
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TABLE 1 
Kinds of Coherence Problems 

Problem Elements 

Truth propositions 

Epistemic justification propositions 

Positive constraints Negative constraints Accepted as 

entailment, etc. inconsistency true 

entailment, inconsistency, known 

Mathematics 

Logical justification 

explanation, etc. 

deduction 

justify 

axioms, theorems 

principles, prac- 

tices 

principles, 

judgments 

principles, court 

decisions 

actions, goals 

images 

competition 

inconsistency 

inconsistency 

known 

justified 

Ethical justification justify inconsistency iustified 

Legal justification justify inconsistency iustified 

Practical reasoning 

Perception 

incompatibility 

inconsistency 

facilitation 

connectedness, 

parts 

semantic related- 

ness 

similarity, 

structure, purpose 

consistency 

desirable 

seen 

Discourse 

comprehension 

Analogy 

meanings 

mapping 

hypotheses 

beliefs, attitudes Cognitive dissonance 

Impression formation stereotypes, traits association 

Democratic actions, goals, facilitation, 

deliberation propositions explanation 

inconsistency understood 

1 - 1 mappings correspond- 

ing 

inconsistency believed 

negative association believed 

incompatible joint action 

actions and beliefs 

be viewed as a kind of coherence problem. The elements in impression formation are the 

various characteristics that can be applied to people; the positive constraints come from 

correlations among the characteristics; and the negative constraints come from negative 

correlations. For example, if you are told that someone is a Mafia nun, you have to recon- 

cile the incompatible expectations that she is moral (nun) and immoral (Mafia). Thagard 

and Kunda (in press) argue that understanding other people involves a combination of con- 

ceptual, explanatory, and analogical coherence. 

Important political and economic problems can also be reconceived in terms of parallel 

constraint satisfaction. Arrow (1963) showed that standard assumptions used in economic 

models of social welfare are jointly inconsistent. Mackie (forthcoming) argues that delib- 

erative democracy should not be thought of in terms of the idealization of complete con- 

sensus, but in terms of a group process of satisfying numerous positive and negative 

constraints. Details remain to be worked out, but democratic political decision appears to 

be a matter of both explanatory and deliberative coherence. Explanatory coherence is 

required for judgments of fact that are relevant to decisions, and multi-agent deliberative 

coherence is required for choosing what is optimal for the group as a whole. 

Table 1 summarizes the various coherence problems that have been described in this 

section. 
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4 COMPUTING COHERENCE 

If coherence can indeed be generally characterized in terms of satisfaction of multiple pos- 

itive and negative constraints, we can precisely address the question of how coherence can 

be computed, i.e. how elements can be selectively accepted or rejected in a way that max- 

imizes compliance with the two coherence conditions on constraint satisfaction. This sec- 

tion describes five algorithms for maximizing coherence: 

1. an exhaustive search algorithm that considers all possible solutions; 

2. an incremental algorithm that considers elements in arbitrary order; 

3. a connection& algorithm that uses an artificial neural network to assess coherence; 

4. a greedy algorithm that uses locally optimal choices to approximate a globally optimal 

solution; 

5. a semidefinite programming (SDP) algorithm that is guaranteed to satisfy a high pro- 

portion of the maximum satisfiable constraints. 

The first two algorithms are of limited use, but the others provide effective means of 

computing coherence. 

Algorithm 1: Exhaustive 

The obvious way to maximize coherence is to consider all the different ways of accept- 

ing and rejecting elements. Here is the exhaustive algorithm: 

1. Generate all possible ways of dividing elements into accepted and rejected. 

2. Evaluate each of these for the extent to which it achieves coherence. 

3. Pick the one with highest value of W. 

The problem with this approach is that for n elements, there are 2* possible acceptance 

sets. A small coherence problem involving only 100 propositions would require consider- 

ing 2’O”- -1,267,650,600,228,229,401,496,703,205,376 different solutions. No computer, 

and presumably no mind, can be expected to compute coherence in this way except for triv- 

ially small cases. 

In computer science, a problem is said to be intractable if there is no deterministic poly- 

nomial-time solution to it, i.e. if the amount of time required to solve it increases at a 

faster-than-polynomial rate as the problem grows in size. For intractable problems, the 

amount of time and memory space required to solve the problem increases rapidly as the 

problem size grows. Consider, for example, the problem of using a truth table to check 

whether a compound proposition is consistent. A proposition with n connectives requires a 

truth table with 2’ rows. If n is small, there is no difficulty, but an exponentially increasing 

number of rows is required as n gets larger. Problems in the class NP include ones that can 

be solved in polynomial time by a nondeterministic algorithm that allows guessing. 

Members of an important class of problems called NP-complete are equivalent to each 

other in the sense that if one of them has a polynomial time solution, then so do all the oth- 

ers. A new problem can be shown to be NP-complete by showing (a) that it can be solved 

in polynomial time by a nondeterministic algorithm, and (b) that a problem already known 

to be NP-complete can be transformed to it, so that a polynomial-time solution to the new 
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problem would serve to generate a polynomial-time solution to all the other problems. If 

only (b) is satisfied, then the problem is said to be NP-hard, i.e. at least as hard as the 

NP-complete problems. In the past two decades, many problems have been shown to be 

NP-complete, and deterministic polynomial-time solutions have been found for none of 
them, so it is widely believed that the NP-complete problems are inherently intractable.4 

Millgram (1991) noticed that the problem of computing coherence appears similar to 
other problems known to be intractable and conjectured that the coherence problem is also 

intractable. He was right: In the appendix we show that MAX CUT, a problem in graph 

theory known to be NP-complete, can be transformed to the coherence problem. If there 

were a polynomial-time solution to coherence maximization, there would also be a polyno- 

mial-time solution to MAX CUT and all the other NP-complete problems. So, on the 
widely held assumption that P#NP (i.e. that the class of problems solvable in polynomial 

time is not equal to NP), we can conclude that the general problem of computing coherence 
is computationally intractable. As the number of elements increases, a general solution to 

the problem of maximizing coherence will presumably require an exponentially increasing 

amount of time. For epistemic coherence and any other kind that involves large numbers of 
elements, this result is potentially disturbing. Each person has thousands or millions of 
beliefs. Epistemic coherentism requires that justified beliefs must be shown to be coherent 
with other beliefs. But the transformation of MAX CUT to the coherence problem shows, 

assuming that P#NP, that computing coherence will be an exponentially increasing func- 

tion of the number of beliefs. 

Algorithm 2: Incremental 

Here is a simple, efficient serial algorithm for computing coherence: 

1. Take an arbitrary ordering of the elements el, . . .e, of E. 
2. Let A and R, the accepted and rejected elements, be empty. 
3. For each element ei in the ordering, if adding ei to A increases the total weight of sat- 

isfied constraints more than adding it to R, then add ei to A; otherwise, add ei to R. 

The problem with this algorithm is that it is seriously dependent on the ordering of the 
elements. Suppose we have just 4 elements, such that there is a negative constraint between 

el and e2, and positive constraints between el and e3, el and e4, and e2 and e4. In terms of 
explanatory coherence, el and e2 could be thought of as competing hypotheses, with el 
explaining more than e2, as shown in Figure 1. The four other algorithms for computing 

e3 e4 

Figure 1. A simple coherence problem. Positive constraints are represented by thin lines, and the 

negative constraint is represented by a thick line. 
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coherence discussed in this section accept el, es, and e4, while rejecting e2. But the serial 

algorithm will accept e2 if it happens to come first in the ordering. In general, the serial 
algorithm does not do as well as the other algorithms at satisfying constraints and accepting 
the appropriate elements.5 

Although the serial algorithm is not attractive prescriptively as an account of how coher- 

ence should be computed, it may well describe to some extent people’s limited rationality. 

Ideally, a coherence inference should be nonmonotonic in that maximizing coherence can 
lead to rejecting elements that were previously accepted. In practice, however, limitations 

of attention and memory may lead people to adopt local, suboptimal methods for calculat- 
ing coherence (Hoadley, Ranney, & Schank, 1994). Psychological experiments are needed 
to determine the extent to which people do coherence calculations suboptimally. In gen- 

eral, coherence theories are intended to be both descriptive and prescriptive, in that they 

describe how people make inferences when they are in accord with the best practices com- 
patible with their cognitive capacities (Thagard 1992, p. 97). 

Algorithm 3: Connectionist 

A more effective method for computing coherence uses connectionist (neural network) 

algorithms. This method is a generalization of methods that have been successfully applied 

in computational models of explanatory coherence, deliberative coherence, and elsewhere. 

Here is how to translate a coherence problem into a problem that can be solved in a con- 

nectionist network: 

1. 

2. 

3. 

4. 

5. 

For every element ei of E, construct a unit ui which is a node in a network of units U. 
Such networks are very roughly analogous to networks of neurons. 
For every positive constraint in C+ on elements ei and ej construct a symmetric exci- 
tatory link between the corresponding units ui and Uj. Elements whose acceptance is 
favored (see section 6 below) can be positively linked to a special unit whose activa- 
tion is clamped at the maximum value. 
For every negative constraint in C- on elements ei and ej construct a symmetric inhib- 
itory link between the corresponding units ui and Uj. 
Assign each unit ui an equal initial activation (say .Ol), then update the activation of 
all the units in parallel. The updated activation of a unit is calculated on the basis of its 
current activation, the weights on links to other units, and the activation of the units to 
which it is linked. A number of equations are available for specifying how this updat- 
ing is done.6 Typically, activation is constrained to remain between a minimum 
(e.g., -1) and a maximum (e.g., 1). 
Continue the updating of activation until all units have settled-achieved unchanging 
activation values. If a unit Ui has final activation above a specified threshold (e.g., 0), 
then the element ei represented by Ui is deemed to be accepted. Otherwise, e; is 
rejected. 

We thus get a partitioning of elements of E into accepted and rejected sets by virtue of 
the network U settling in such a way that some units are activated and others deactivated. 
Intuitively, this solution is a natural one for coherence problems. Just as we want two 
coherent elements to be accepted or rejected together, so two units connected by an excita- 
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TABLE 2 
Comparison of coherence problems and connectionist networks. 

Coherence Connectionist network 

element unit 
positive constraint excitatory link 
negative constraint inhibitory link 
conditions on coherence parallel updating of activation 

element accepted unit activated 
element rejected unit deactivated 

tory link will tend to be activated or deactivated together. Just as we want two incoherent 

elements to be such that one is accepted and the other is rejected, so two units connected 

by an inhibitory link will tend to suppress each other’s activation with one activated and the 

other deactivated. A solution that enforces the two conditions on maximizing coherence is 

provided by the parallel update algorithm that adjusts the activation of all units at once 

based on their links and previous activation values. Table 2 compares coherence problems 

and connectionist networks. 

Connectionist algorithms can be thought of as maximizing the “goodness-of-fit” or 

“harmony” of the network, defined by CiCjwijai(t)Uj(t), where wii is the weight on the link 

between two units, and Ui is the activation of a unit (Rumelhart, Smolensky, Hinton, & 

McClelland, 1986, p. 13). The characterization of coherence given in section 1 is an 

abstraction from the notion of goodness-of-fit. The value of this abstraction is that it pro- 

vides a general account of coherence independent of neural network implementations and 

makes possible investigation of alternative algorithmic solutions to coherence problems. 

See section 5 for discussion of various measures of coherence. 

Despite the natural alignment between coherence problems and connectionist networks, 

the connectionist algorithms do not provide a universal, guaranteed way of maximizing 

coherence. We cannot prove in general that connectionist updating maximizes the two con- 

ditions on satisfying positive and negative constraints, since settling may achieve only a 

local maximum. Moreover, there is no guarantee that a given network will settle at all, let 

alone that it will settle in a number of cycles that is a polynomial function of the number of 

units. 

While synchronous update networks, such as those used in this paper, are not generally 

guaranteed to converge, some convergence results are known for restricted network topol- 

ogies. For example, in the neural network model used by Kintsch in his work on discourse 

comprehension, Rodenhausen (1992) has shown that if all connection weights are strictly 

positive, and if for every node in the network the sum of the edge weights connected to that 

node is one, then the network will converge to a stable state. This result does not apply in 

general for the coherence networks discussed in this paper, however, since our networks 

typically have negative weights. 

Other notable models in which convergence results can be shown are the models based 

on Ising spin glasses from statistical physics, such as Hopfield networks and Boltzmann 

machines. Hopfield (1982) showed that in a network with symmetrical connections, if node 
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updates are asynchronous, then the network will converge to a local optimum. Several 

authors have studied the time required for Hopfield networks to reach a stable state. An 

overview of convergence results is given in Godbeer (1987). Lipscomb (1987) shows that 

the Hopfield asynchronous update algorithm will converge to a stable state with a number 

of updates bounded by the sum of the magnitudes of the weights in the network. If all 

weights in the network are bounded by a polynomial function of the number of nodes, this 

implies convergence in polynomial time. Haken (1988) shows that if the weights are arbi- 

trarily large, the asynchronous algorithm may take an exponential number of updates to 

converge to a stable state. The work of Alon (1985) shows that if all of the connections are 

positive, then the asynchronous algorithm will converge to a stable state in a polynomial 

number of updates, regardless of the magnitude of the weights. 

To overcome the problem of converging to a locally optimal state in the Hopfield 

model, the Boltzmann machine of Hinton and Sejnowski (1986) uses a simulated annealing 

technique to escape local minima. The simulated annealing technique, due to Kirkpatrick. 

Gelatt and Vecchi (1983), uses local gradient descent but allows for a jump to a higher 

energy state with a probability determined by the “temperature” of the system and the 

energy of that state. This allows an escape from local minima, usually resulting in a solu- 

tion with a lower energy state than that obtained using gradient descent. The simulated 

annealing technique does not, however, guarantee that the globally optimal solution will be 

found in polynomial time. The results of Geman and Geman (1984) show that if the anneal- 

ing schedule is exponentially slow (i.e., the temperature change is exponentially small in 

the size of the network), the simulated annealing process will converge to the globally opti- 

mal solution with probability one. 

Both Hopfield networks and the simulated annealing techniques used in Boltzmann 

machines have been used to approximate hard combinatorial problems, such as the travel- 

ling salesman problem (Hopfield & Tank, 1985; Kirkpatrick et al. 1983). Obtaining the 

optimal ground state of any Ising spin glass model is shown by Barahona to solve the Max 

Cut problem (Barahona, 1982, Barahona, & Titan, 1993). Thus, any algorithm guaranteed 

to achieve the optimal state in polynomial time would solve an NP-complete problem; 

hence it is unlikely that any such algorithm exists. While there are no mathematical guar- 

antees on the quality of solutions produced by neural networks, empirical results for 

numerous connectionist models of coherence yield excellent results. ECHO is a computa- 

tional model of explanatory coherence that has been applied to more than a dozen cases 

from the history of science and legal reasoning, including cases with more than 150 prop- 

ositions. (Thagard, 1989, 1991, 1992a, 1992~; Nowak & Thagard, 1992a, 1992b; Eliasmith 

& Thagard, 1997).7 Computational experiments revealed that the number of cycles of acti- 

vation updating required for settling does not increase as networks become larger: fewer 

than 200 cycles suffice for all ECHO networks tried so far (Thagard in press). ARCS is a 

computational model of analog retrieval that selects a stored analog from memory on the 

basis of its having the most coherent match with a given analog (Thagard, Holyoak, Nel- 

son, & Gochfeld, 1990). ARCS networks tend to be much larger than ECHO networks-- 

up to more than 400 units and more than 10,000 links - but they still settle in fewer than 200 

cycles, and the number of cycles for settling barely increases with network size. Thus quan- 
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titatively these networks are very well behaved, and they also produce the results that one 

would expect based on coherence maximization. For example, when ARCS is used to 

retrieve an analog for a representation of West Side Story from a data base of representa- 

tions of 25 of Shakespeare’s plays, it retrieves Romeo and Juliet. 

The dozen coherence problems summarized in Table 1 might give the impression that 

the different kinds of inference involved in all the problems occur in isolation from each 

other. But any general theory of coherence must be able to say how different kinds of coher- 

ence can interact. For example, the problem of other minds can be understood as involving 
both explanatory coherence and analogical coherence: the plausibility of my hypothesis that 

you have a mind is based both on it being the best explanation of your behavior and on the 

analogy between your behavior and my behavior (Holyoak and Thagard, 1995, ch. 7). The 
interconnections between different kinds of coherence can be modelled effectively by intro- 
ducing new kinds of constraints between the elements of the different coherence problems. 

In the problem of other minds, the explanatory coherence element representing the hypoth- 
esis that you have a mind can be connected by a positive constraint with the analogical 

coherence element representing the mapping hypothesis that you are similar to me. Choos- 

ing the best explanation and the best analogy can then occur simultaneously as intercon- 

nected coherence processes. Similarly, ethical justification and epistemic justification can 

be intertwined through constraints that connect ethical principles and empirical beliefs, for 
example about human nature. A full, applied coherence theory would specify the kinds of 

connecting constraints that interrelate the different kinds of coherence problems. The par- 
allel connectionist algorithm for maximizing coherence has no difficulty in performing the 

simultaneous evaluation of interconnected coherence problems. 

Algorithm 4: Greedy 

Other algorithms are also available for solving coherence problems efficiently. We owe 

to Toby Donaldson an algorithm that starts with a randomly generated solution and then 
improves it by repeatedly flipping elements from the accepted set to the rejected set or vice 

versa. In computer science, a greedy algorithm is one that solves an optimization problem 
by making a locally optimal choice intended to lead to a globally optimal solution. Seiman, 
Levesque, and Mitchell (1992) presented a greedy algorithm for solving satisfiability prob- 

lems, and a similar technique produces the following coherence algorithm: 

1. Randomly assign the elements of E into A or R. 

2. For each element e in E, calculate the gain (or loss) in the weight of satisfied con- 
straints that would result from flipping e, i.e. moving it from A to R if it is in A, or mov- 
ing it from R to A otherwise. 

3. Produce a new solution by flipping the element that most increases coherence, i.e. 
move it from A to R or from R to A. In case of ties, choose randomly. 

4. Repeat 2 and 3 until either a maximum number of tries have taken place or until there 
is no flip that increases coherence. 

On the examples on which we have tested it, this algorithm produces the same result as 
the connectionist algorithm, except that the greedy algorithm breaks ties randomly.* With 
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its use of random solutions and a great many coherence calculations, this algorithm seems 

less psychologically plausible than the connectionist algorithm. 

Algorithm 5: Semidefinite programming 

The proof in the appendix that the graph theory problem MAX CUT can be transformed 

to the coherence problem shows a close relation between them. MAX CUT is a difficult 

problem in graph theory that until recently had no good approximation: for twenty years 
the only available approximation technique known was one similar to the incremental algo- 

rithm for coherence we described above. This technique only guarantees an expected value 
of .5 times the optimal value. Recently, however, Goemans and Williamson (1994) discov- 

ered an approximation algorithm for MAX CUT that delivers an expected value of at least 
.87856 times the optimal value. Their algorithm depends on rounding a solution to a relax- 

ation of a nonlinear optimization problem, which can be formulated as a semidefinite pro- 
gramming (SDP) problem, a generalization of linear programming to semidefinite 
matrices. Mathematical details are provided in the appendix. 

What is important from the perspective of coherence are two results, one theoretical and 

the other experimental. Theoretically, the appendix proves that the semidefinite program- 

ming technique that was applied to MAX CUT can also be used for the coherence problem, 
with the same .878 performance guarantee: using this technique guarantees that the weight 
of the constraints satisfied by a partition into accepted and rejected will be at least .878 of 
the optimal weight. But where does this leave the connectionist algorithm which has no 
similar performance guarantee? We have run computational experiments to compare the 

results of the SDP algorithm to those produced by the connectionist algorithms used in 

existing programs for explanatory and deliberative coherence.’ Like the greedy algorithm. 
the semidefinite programming solution handles ties between equally coherent partitions 
differently from the connectionist algorithm, but otherwise it yields equivalent results. 

5 MEASURING COHERENCE 

The formal constraint satisfaction characterization of coherence and the various algorithms 

for computing coherence suggest various means by which coherence can be measured. 
Such measurement is useful for both philosophical and psychological purposes. Philoso- 
phers concerned with normative judgments about the justification of belief systems natu- 
rally ask questions about the degree of coherence of a belief or set of beliefs. Psychologists 
can use degree of coherence as a variable to correlate with experimental measures of men- 
tal performance such as expressed confidence of judgments. 

There are three sorts of measurement of coherence that are potentially useful: 

1. the degree of coherence of an entire set of elements. 
2. the degree of coherence of a subset of the elements. 
3. the degree of coherence of a particular element. 

The goodness-of-fit (harmony) measure of a neural network defined in section 4, CiCjWi_ 
I~i(t)uJit), can be interpreted as the coherence of an entire set of elements that are assigned 
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activation values that represent their acceptance and rejection. This measure is of limited 

use, however, since it is very sensitive to the number of elements, as well as to the particular 

equations used to update activation in the networks. Sensitivity to size of networks can be 

overcome by dividing goodness-of-fit by the number of elements or by the number of links 

or constraints (cf. Shultz & Lepper, 1996). Holyoak and Thagard (1989) found that good- 

ness-of-fit did not give a reliable metric of the degree of difficulty of analogical mapping, 
which they instead measured in terms of the number of cycles required for a network to settle. 

Network-independent measures of coherence can be stated in terms of the definition of 
a coherence problem given in section 2. For any partition of the set of elements into 

accepted and rejected, there is a measure W of the sum of the weights of the satisfied con- 

straints. Let W-opt be the coherence of the optimal solution. The ideal measure of coher- 

ence achieved by a particular solution would be W/W_opt, the ratio of the coherence W of 

the solution to the coherence W-opt of the optimal solution; thus the best solution would 

have measure one. This measure is difficult to obtain, however, since the value of the opti- 
mal solution is not generally known. Another possible measure of coherence is the ratio W/ 
W*, where W* is the sum of the weights of all constraints. This ratio does not necessarily 

indicate the closeness to the optimal solution as W/N_opt would, but it does have the prop- 
erty that the higher the ratio, the closer the solution is to optimal. Thus it gives a size-inde- 

pendent measure of coherence. In addition, when there is a solution where all constraints 

are satisfied, W/W* is equal to W/w_opr. 

Neither goodness-of-fit nor WMr* provides a way of defining the degree of coherence 

of a subset of elements. This is unfortunate, since we would like be able to quantify judg- 
ments such as “Darwin’s theory of evolution is more coherent than creationism,” where 

Darwin’s theory consists of a number of hypotheses. The connectionist algorithm does pro- 
vide a useful way to measure the degree of coherence of a particular element, since the acti- 

vation of a unit represents the degree of acceptability of the element. Empirical tests of 

coherence theories have found strong correlations between experimental measurements of 
people’s confidence about explanations and stereotypes and activation levels produced by 

connectionist models (Read and Marcus-Newhall, 1993; Kunda and Thagard, 1996; Schank 
and Ranney, 1992). The coherence of a set of elements can then be roughly measured as 
the mean activation of those elements. It would be desirable to define, within our abstract 

model of coherence as constraint satisfaction, a measure of the degree of coherence of a par- 
ticular element or of a subset of elements, but it is not clear how to do so. Such coherence 

is highly non-linear, since the coherence of an element depends on the coherence of all the 
elements that constrain it, including elements with which it competes. The coherence of a 
set of elements is not simply the sum of the weights of the constraints satisfied by accepting 
them, but depends also on the comparative degree of constraint satisfaction of other ele- 
ments that negatively constrain them. 

6 CIRCULARITY AND TRUTH 

Our characterization of coherence in terms of constraint satisfaction and our analysis of 
various algorithms for computing coherence are relevant to psychology, in that they pro- 
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vide a unified way of understanding diverse psychological phenomena (see Table 1). Our 

computational results are also of some psychological interest, particularly the finding that 

the coherence problem is NP-hard but nevertheless can be reliably approximated. Connec- 

tionist networks do not provide the only means of computing coherence, but they appear to 

work at least as well as less psychologically plausible computational techniques that have 

proven performance guarantees. Neural networks provide an efficient means for approxi- 

mately solving the hard computational problem of computing coherence. 

Our constraint-satisfaction characterization of coherence is particularly relevant to phi- 

losophy, where coherence ideas have been increasingly important for several decades, 

despite the lack of an exact notion of coherence. Compared to rigorous explorations of 

deductive logic and probability theory, coherence approaches to epistemology and ethics 

have been vague and imprecise. In contrast, we have presented a mathematically exact, 

computationally manageable, and psychologically plausible account of how coherence 

judgments can be made. 

Our account of coherence provides an answer to some of the frequently offered objec- 

tions to coherence theories in philosophy. In epistemology, foundationalists suppose that 

justification must be based on a set of elements that do not themselves need justification. 

Coherence theorists deny the existence of such given elements, and therefore must face the 

circularity objection. An element is accepted because it coheres with other elements which 

are themselves accepted because they cohere with other elements which are themselves 

. . . . . ad infinitum. From the perspective of formal logic, where premises justify their con- 

clusions and not vice versa, coherentist justification seems viciously circular. 

Coherentists such as Bosanquet (1920) and BonJour ( 1985) have protested that the cir- 

cularity evident in coherence-based justification is not vicious, and the algorithms for com- 

puting coherence in section 4 show more precisely how a set of elements can depend on 

each other interactively. Using the connectionist algorithm, we can say that after a network 

of units has settled and some units are identified as being activated, then acceptance of each 

element represented by a unit is justified on the basis of its relation to all other elements. 

The algorithms for determining activation (acceptance) proceed fully in parallel, with each 

unit’s activation depending on the activation of all connected units after the previous cycle. 

Because it is clear how the activation of each unit depends simultaneously on the activation 

of all other units, there need be no mystery about how acceptance can be the result of 

mutual dependencies. Similarly, the greedy and SDP algorithms maximize constraint sat-- 

isfaction globally, not by evaluating individual elements sequentially. Thus modern mod-- 

els of computation vindicate Bosanquet’s claim that inference need not be interpreted 

within the confines of linear systems of logical inference. 

Coherence-based inference involves no regress because it does not proceed in steps, but 

rather by simultaneous evaluation of multiple elements. Figure 2a shows a pattern of infer- 

ence that would indeed be circular, but Figure 2b shows the situation when a connectionist 

algorithm computes everything at once. Unlike entailment or conditional probability, 

coherence constraints are symmetric relations, making possible the double-headed arrows 

in Figure 2b. 
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Figure 2. Circular versus non-circular justification 

Coherence-based reasoning is thus not circular, but it is still legitimate to ask whether it 

is effective. Do inferences based on explanatory and other kinds of coherence produce true 

conclusions? Early proponents of coherence theories of inference such as Blanshard (1939) 

also advocated a coherence theory of truth, according to which the truth of a proposition is 

constituted by its being part of a general coherent set of propositions. From the perspective 

of a coherence theory of truth, it is trivial to say that coherence-based inference produces 

truth (i.e. coherent) conclusions. But a major problem arises for coherentist justification 

with respect to a correspondence theory of truth, according to which the truth of a proposi- 

tion is constituted by its relation to an external, mind-independent world. 

Proponents of coherence theories of truth reject the idea of such an independent world, 

but considerations of explanatory coherence strongly support its existence. Why do differ- 

ent people have similar sensory experiences in similar situations? Why are scientists able 

to replicate each other experiments? Why are people unable to have just the sensory expe- 

riences they want? Why do scientists often get negative experimental results? Why does 

science often lead to technological successes? The best explanation of these phenomena is 

that there is an external world that operates independently of human minds and causally 

influences our perceptions and experimental results (see Thagard, 1988, ch. 8, for further 

argument). Hence truth is a matter of correspondence, not mere coherence. 

Coherence theories of justification therefore have a serious problem in justifying the 

claim that they can lead to truth. Thagard, Eliasmith, Rusnock, and Shelley (forthcoming) 

address this issue by distinguishing three kinds of coherence problems. A pure coherence 

problem is one that does not favor the acceptance of any particular set of elements. Afaun- 

dutional coherence problem selects a set of ‘favored elements for acceptance as self-justi- 

fied. A discriminating coherence problem favors a set of elements but their acceptance still 

depends on their coherence with all the other elements. The issue of correspondence is 

most acute for pure coherence problems, in which acceptance of elements is based only on 

their relation to each other. But the coherence theories that have so far been implemented 

computationally all treat coherence problems as discriminating. For example, explanatory 

coherence theory gives priority (but not guaranteed acceptance) to elements representing 

the results of observation and experiment (Thagard, 1992). Connectionist algorithms natu- 

rally implement this discrimination by spreading activation first to elements that should be 

favored in the coherence calculation (footnote 6). Then, assuming with the correspondence 

theory of truth that observation and experiment involve in part causal interaction with the 
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world, we can have some confidence that the hypotheses adopted on the basis of explana- 

tory coherence also correspond to the world and are not mere mind-contrivances that are 

only internally coherent. 

The problem of correspondence to the world is even more serious for ethical justifica- 

tion, for it is not obvious how to legitimate a coherence-based ethical judgment such as “it 

is permissible to eat some animals but not people.” Thagard (forthcoming) argues that eth- 

ical coherence involves complex interactions of deliberative, deductive, analogical, and 

explanatory coherence. In some cases the relative objectivity of explanatory coherence, 

discriminating as it does in favor of observation and experiment, can carry over to the 

objectivity of ethical judgments that also involve other kinds of coherence. 

7 CONCLUSION 

We have given a general characterization of coherence that applies to many areas of phi- 

losophy and psychology. The characterization is precise enough that its computational 

properties can be analyzed and general methods of computing coherence can be provided. 

Assessment of coherence can be done in ways that are computationally efficient, psycho- 

logically plausible, and philosophically acceptable in that they answer important objec- 

tions that have been made against coherence theories. In the past, coherence views of 

inference have appeared vague in comparison to more rigorous views based on deductive 

logic and the probability calculus. But coherence theories can now be more fully specified 

by characterizing coherence as constraint satisfaction and by computing it using connec- 

tionist and other algorithms. 

APPENDIX 

In this appendix, we give definitions of Max Cut and Coherence, discuss their respective 

complexity results, give details of the semidefinite approximation algorithm for coherence, 

and extend this to an approximation algorithm for the optimal stable state of an arbitrary 

neural network. 

Max Cut: Given a graph G = (V,E) with vertex set V and edge set E, and edge weights 

wii E z’, the Max Cut problem is to partition the vertices into sets VI and VP such that the 

sum of the weights with one endpoint in VI and the other in V, is maximized. 

We state the coherence problem as a graph problem, in which the elements are repre- 

sented as vertices, and the constraints are represented as edges. There are two edge sets for 

the graph, corresponding to the positive and negative constraints, respectively. The coher- 

ence problem is then stated as follows. 

Coherence: Given a graph G = (V,E) with vertex set V and edge set E, disjoint sets c” 

and C- such that C? u C- = E and edge weights wii E 2?, partition the vertices into sets A 

and R such that the coherence is maximized, where the coherence is defined as 

Coh(A,R) = IL wjj + c MJjj 

(v,, vj) E C’and Y,. vj E A or v,, v, E R (v,, v,) E C-and v, E A, v, E R or v, E A, I’, E R 
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The max cut problem can be reduced to the coherence problem by encoding the edges E 

of the max cut problem as negative constraints C-in the coherence problem. The value of 

Coh(A,R) is then exactly twice the value of the optimal solution to max cut, so an optimal 

solution to the coherence problem gives an optimal solution to the max cut problem, and 

the coherence problem is therefore NP-hard. It follows from this reduction that coherence 

problems with only negative constraints remain NP-hard. In contrast, note that coherence 

problems with only positive constraints are trivially solvable by putting all vertices in A. 

The coherence problem can also be stated as an integer quadratic program. Let yi = 1 if 

yi E A, and yi = -1 if yi E R. Maximizing coherence is then equivalent to: 

Maximize: 
2% V)E c+ wij( ’ + YiYj) + ’ 

1’ I 
(v y ) E c-wij(l -YiYj)) 

1’ I 
(1) 

subject to: Y;E f--1,1> Vi such that vi E V 

Solving integer quadratic programs is in general NP-hard. Using a technique due to 

Goemans and Williamson (1994), we show how to relax the optimization problem to 

obtain a semidefinite program, which can be solved efficiently, and to round the solution 

of the semidefinite program to obtain an approximate solution to the coherence problem. 

First, we define semidefinite programming. 

Semidefinite programming is essentially an extension of linear programming to sym- 

metric matrix variables that are positive semidefinite. An n x n matrix A is said to be posi- 

tive semidefinite if for every vector x E R”, xTAx 2 0. An essential property of semidefinite 

matrices that we will use in the approximation technique is the following: if A is a positive 

semidefinite matrix, then there exists a matrix B such that A = BTB, and this matrix can be 

efficiently computed using Cholesky factorization. 

The standard semidefinite programming problem is defined as follows (Alizadeh 

(1992)): min {C*X:Ai*X=bifori= l,..., m}, where C, Ai and X are n x n matrices, X 
X 

is symmetric and positive semidefinite, and A l B = Ci,j AiiB~. Alizadeh gives an algo- 

rithm for solving semidetinite programming problems to within E of optimality in 

0 
( nl” E I) 

J 1 gi iterations. Note that while the solution produced is a symmetric positive 

semidefinite matrix X, the coefficient matrices C and Ai are not required to be positive 

semidefinite. 

We now relax the integer quadratic objective function given for the coherence problem 

to a semidefinite programming problem. Consider the yi variables of (1) to be unit norm 

vectors in one dimension. Now, suppose that we allow yi to be a multi-dimensional vector 

zi of unit norm. Let S,, denote the n-dimensional unit sphere in R”. Then zi E S,. The pro- 

gram of (1) then becomes: 

Maximize: 
Y)E c+ 1’ I 

W;j( 1 + Zi Zj) + ~:(” v ) E c-wij( l - Zi Zj)) 
1’ J 

(2) 

subject to: zi = E S, Vi such that vi E V 
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program of (2) is a relaxation of (l), note that when the z/s are 

one-dimensional unit vectors, (1 - zi . zj> reduces to (1 - yi vi). The objective in (2) is not 

yet in the form of a semidefinite program, since the z/s are unit vectors. However, the dot 

product of zi and zj is a scalar value in the range [-l,l], which we denote by ~9. Hence, we 

can rewrite (2) as: 

Maximize: 

Subject to: z;i = 1 Vi such that vi E V 

Restricting Zii to 1 forces the Z/S to be unit vectors, since zii = Zi . zi = 1 if and only if the 

norm of zi is 1. The program of (3) is now in the form of a semidefinite program. In order 

to transform the solution of this program back to the form of (2), we use the following 

property of symmetric positive semidefinite matrices, discussed above: if A is a symmetric 

positive semidefinite matrix, then there exists a matrix B such that A = BTB, and the matrix 

B can be computed in polynomial time using incomplete Cholesky decomposition. Now, 

let Z = (z$. Using Cholesky decomposition, a matrix Z can be computed such that Z = Z’r 

Z’. Let the columns of Z be denoted ~1,. . ., z,. As noted above, the z/s are vectors on the 

unit sphere. 

To produce an approximate solution to the coherence problem, we randomly partition 

the vectors zi as follows. Draw a vector r uniformly at random from the unit sphere S,, and 

assign vertex Vi to the accepted set A if zi . r 2 0, or to the rejected set if zi . r < 0. Taking 

the dot product of each vector zi with the random vector r partitions the vectors with a ran- 

dom hyperplane through the origin with normal r into the set A of vectors that lie above the 

hyperplane, and the set R that lie below it. 

We now show that the solution to the coherence problem produced by the randomized 

partitioning technique has expected weight within 0.878 of optimal. Let E[Coh(A,R)] be the 

expected value of the coherence of the sets A and R produced by the randomized algorithm. 

Lemma 1: QCoh(A, WI= Zcv v )Ec+wij . Pr[sgn(zi . r) = sgn(zj. r)] + 
1’ i 

ccy v jEc_~ij 
1. i 

Pr[sgn(zi . r) # sgn(zj . r)], where sgn (x) = 1 if x 2 0, and -1 otherwise 

This lemma simply states that the expectation on the quality of the approximate solution 

is proportional to the probability that the elements are placed in the same set (either A or R) 

for positive constraints, or the probability that the elements are placed in different sets for 

negative constraints. The proof of the lemma follows. 

Proof: Recall that a positive constraint is satisfied if both vertices are placed in A, or 

both in R. Recall also that vertex Vi is placed in A if zi . r 2 0. Hence, the summation in the 

first term is the expected weight of positive constraints that are satisfied by the solution. 

Similarly, the summation in the second term is the expected weight of negative constraints 

that are satisfied by the solution. H 

Now, we characterize the probability of two elements being assigned to the same set, or 

to different sets. 
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Lemma 2 (Goemans and Williamson (1994)): Pr[sgn(zi + r) # sgn(zj. r)] = 

i xccos (zi . zj), and Pr[sgn(zi . r) = sgn(zj * r)] = 1 - i uccos (zi . Zj) 

The values from Lemma 2 are bounded in the following lemma. 

Lemma3: For-l lyll, $ arccos(y)>ai(l-y),and 1- k arccos(y)>a~ (1 +y), 

where a = min 
O<eSnZe 

> 0.87856. 
Xl -case 

The proofs of Lemmas 2 and 3 follow from Lemmas 1.3 and 2.1 of Goemans and Will- 

iamson (1994). From Lemmas 1,2 and 3, we have the following Theorem. 

Theorem 1: 

E[Coh(A, IO1 2 a ; ( c ~$1 + zi . zj) + C wij( 1 - (zi. zj,, 

(Vi. v,) E c+ (v,. v,) E c- 

where a = min 
O<BS&8 

> 0.87856. 
111 -case 

Optimizing Harmony of a Neural Network Using Coherence 

Most commonly-used neural network models have activation values bounded by 

binary values, either 0 and 1, or -1 and 1 (which are essentially equivalent.) We use 

the -1, 1 model here. Recall that the harmony (goodness-of-fit) of a neural network is 

defined as H = Ci,j wo Vi vj where vi and Vj are used here to represent the activation 

values of the corresponding nodes, and the wii weights can be either positive or nega- 

tive. Let Hopt be the maximal harmony. Let w(G) = ~i,j lw$ be the sum of the magni- 

tudes of the weights in the neural network. Note that the harmony must be in the range 

[-w(G),w(G)]. If the optimal harmony of a neural network is near zero, it does not 

make sense to talk about approximation ratios for harmony; the relative error of an 

approximation algorithm is given by the absolute difference between the quality of the 

solution and the quality of the optimal solution, divided by the quality of the optimal 

solution, hence when the optimal solution has weight near 0 the relative error of the 

algorithm may be arbitrarily high. Thus, we cannot approximate harmony per se. If we 

scale the harmony up by an additive term, however, it makes sense to talk about 

approximating harmony. In the following, we give an algorithm that approximates the 

quantity Hopr + w(G), which is in the range [0, 2 * w(G)], to within a factor of .878. To 

achieve this bound, we use the approximation algorithm for coherence described above. 

We can encode any neural network as a coherence problem by encoding the connections 

with positive weight as positive constraints, and the connections with negative weight as 

negative constraints. Note then that the coherence is the “positive part” of the harmony, 

since H = Coh(A,R) - (w(G) - Coh(A,R)) = 2 * Coh(A,R) - w(G). Thus, H + w(G) = 2 * 

Coh(A, R), and it follows that a 0.878-approximation algorithm for coherence is also a 
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while we are guaranteed that the solution produced by this technique has H + w(G) within 
0.878 of optimal, we are not guaranteed that the state achieved is stable. Note, however, 
that we can use this “solution” as the initial state for a Hopfield-type network, and settle it 

to achieve a stable state with harmony at least as high as that of the initial state. Thus, we 
achieve a stable state with H + w(G) within 0.878 of optimal. 
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NOTES 

1. Our characterization of coherence will not handle non-pairwise inconsistencies or incompatibilities. for 

example when three or more propositions are jointly inconsistent. Computationally. constraints that involve 

more than two elements are very difficult. An unrelated notion of coherence is used in probabilistic accounts 

of belief, where degrees of belief in a set of propositions are called coherent if they satisfy the axioms of 

probability. See Thagard (in press) for discussion of the relations between probability and explanatory coher- 

ence. Many problems in artificial intellegence have been discussed in terms of constraint satisfaction. In Al 

terminology, the coherence problem is a partial constraint satisfaction problem. See Tsang (I 993) and 

Freuder and Mackworth (1994). 

2. A coherence theory of truth may require that our second coherence condition be made more rigid, since two 

inconsistent propositions can never both be true. See section 6 for further discussion of truth. 

3. On epistemic coherence see: Audi (1993), Bender (1989), BonJour (1985). Davidson (1986). Haack ( 1993). 

Harman (1973, 1986), Lehrer (1974, 1990), Rescher (1992). 

4. For a review of NP-completeness, see Garey and Johnson (1979). For an account of why computer scientists 

believe that P#NP, see Thagard (1993). 

5. Rescher (1973) describes a complex serial procedure for deriving coherent truths from maximally consistent 

sets of data. 

6. See McClelland and Rumelhart (1989). For example. on each cycle the activation of a unit j. (I,. can be 

updated according to the following equation: 

a.i(t+ l)=Uj(f)(l-d)+ 

1 

rzetj(mux - uj(t)) if netj > 0 
ne~(uj(t)- min) otherwise 

Here d is a decay parameter (say .05) that decrements each unit at every cycle. min is a minimum activation 

t-l), max is maximum activation (I). Based on the weight M‘~ between each unit i andj. we can calculate 

netj, the net input to a unit, by: 

Although all links in coherence networks are symmetrical, the flow of activation is not. because a special 

unit with activation clamped at the maximum value spreads activation to favored units linked to it. such as 

units representing evidence in the explanatory coherence model ECHO. 

7. Glymour (1992) suggested that ECHO’s calculation of explanatory coherence could be replaced by a few 

simple equations. Thagard (1992b) showed that his proposal produced unacceptable results (e.g. accepting 

some propositions of Ptolemaic astronomy over Copernican). The results reported in this section show why 

a simple solution to coherence calculations is unlikely to be found: the coherence problem is NP-hard, and 

approximation requires either connectionist algorithms such as those used in ECHO or nonlinear program- 

ming techniques of comparable power. 
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8. 

9. 
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Although the greedy algorithm largely replicates the performance of ECHO and DECO on the examples on 

which we have tried it, it does not replicate the performance of ACME which does analogical mapping not 

simply by accepting and rejecting hypotheses that represent the best mappings, but by choosing as best map- 

pings hypotheses represented by units with higher activations that alternative hypotheses. 

Chris Eliasmith adapted a semidefinite programming solution to MAX CUT to provide a similar solution to 

coherence problems, using MATLAB code for MAX CUT given in Helmberg et al. (1996). 
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