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Abstract 

We propose a unified theory of intentions as neural processes that integrate representations of 

states of affairs, actions, and emotional evaluation. We show how this theory provides answers to 

philosophical questions about the concept of intention, psychological questions about human 

behavior, computational questions about the relations between belief and action, and 

neuroscientific questions about how the brain produces actions. Our theory of intention ties 

together biologically plausible mechanisms for belief, planning, and motor control. The 

computational feasibility of these mechanisms is shown by a model that simulates 

psychologically important cases of intention. 

 

Keywords: Intention, Emotion, Action, Implementation Intentions, Automatic, Deliberative, 

Planning, Neural Engineering Framework, Semantic Pointers 

 

 

 

 

 

 

 

 

 

 

 



 

 3 

 

 

Intention, Emotion, and Action: A Neural Theory Based on Semantic Pointers  

1.  The Problem of Explaining Intention 

The concept of intention is important in many disciplines, including philosophy, 

psychology, artificial intelligence, cognitive neuroscience, and law. For example, criminal law 

treats cases where one person intends to kill another very differently from cases where death 

results unintentionally from negligence. Despite decades of discussions, however, there is no 

received theory of intention within any of these disciplines, let alone a theory that accounts for 

all the phenomena identified across all of the disciplines.      

We propose a unified theory of intentions as neural processes that integrate 

representations of states of affairs, actions, and emotional evaluation. We will show how this 

theory provides answers to philosophical questions about the concept of intention, psychological 

questions about human behavior, computational questions about the relations between belief and 

action, and neuroscientific questions about how the brain produces actions. Our theory of 

intention ties together biologically plausible mechanisms for belief, planning, and motor control. 

The computational feasibility of these mechanisms is shown by a model that simulates 

psychologically important cases of intention. These simulations support the plausibility of the 

claim that human intentions are neurocomputational processes operating in the brains of 

individuals. Our theory has implications for many vexed issues in the cognitive sciences, such as 

the nature of the relation between automatic and deliberate processes.   

Intention has been an important topic of philosophical discussion since the 1950s 

(Anscombe, 1957; Bratman 1987; Mele 2009; Setiya; 2010; Ford, Hornsby, and Stoutland, 
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2011). Debates have concerned questions such as the following. What are intentions? What is the 

relation between intentions and other mental entities such as beliefs, desires, plans, and 

commitments? Are intentions causes of actions, or just reasons for actions? What is the relation 

among intentions about future actions and intentions that are part of actions in progress? What is 

the difference between intentional and unintentional actions? Why do people sometimes fail to 

act on their intentions through weakness of will (akrasia)? The nature of intention and its relation 

to action are central to discussions of whether people have free will and whether they should be 

held responsible for their actions.   

Psychologists have been concerned with more practical questions such as how intentions 

can affect people’s behavior in practices such as voting, safe sex, healthy nutrition, and public 

transport. By far the most influential approach has been the theory of planned behavior of 

Fishbein and Ajzen (1975, 2010), according to which behaviors result from intentions, which 

result from a combination of attitudes, subjective norms, and perceived behavioral control, as 

shown in Fig. 1. This approach, however, is based largely on correlations among empirical 

measures of beliefs, attitudes, and intentions, and provides no account of the psychological or 

neural mechanisms by which beliefs and attitudes cause intentions. It also does not specify how 

intentions cause and sometimes fail to cause behavior. Psychologists use the term “intention-

action gaps” for the class of intention failures that philosophers call weakness of will. The 

psychology of self-control studies the cognitive processes and strategies that help people to 

reduce intention-action gaps (Baumeister & Tierney, 2011). One such strategy is the use of 

implementation intentions, i.e. sets of rules that connect anticipated cues in specific situations 

with previously made commitments to certain behavioral choices (Gollwitzer, 1999).  
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Fig. 1.   Theory of planned behavior.  Adapted from Fig. 1 in Ajzen (1991, p. 182). 
 

Intention has also become an important topic in cognitive neuroscience, originating with 

Benjamin Libet’s (1985) controversial claims about the relation of conscious intentions to 

actions. Subsequent work has concerned use of brain imaging to identify human intentions (e.g., 

Cunnington, Windischberger, Robinson, & Moser, 2006; Haynes, Sakaai, Rees, Gilbert, Frith, & 

Passingham, 2007). Work with non-human primates has investigated the relation between 

intentions in frontal and parietal areas and sensorimotor control (Andersen and Cui, 2009). 

Understanding intentions is an important part of building neural prosthetics to aid paralyzed 

patients (Andersen, Hwang, & Mulliken, 2010). However, there has yet to appear a theory of 

neural processing that can account for the results of neuroscientific experiments concerning 

intention.    

In artificial intelligence, intention has been an important part of attempts to program 

computers as intelligent agents (e.g. Wooldridge, 2000). Following Bratman (1987), these AI 

researchers take intentions to be desires to which an agent has become committed as part of a 

plan. In robotics, investigators have considered how an observer robot infers the intention of a 

partner to choose a complementary action sequence (Bicho, Louro, and Erlhagen, 2010).   
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The concept of intention is also central to investigations into legal liability and moral 

responsibility (Moore, 2009). Actions are considered to be more wrongful if they result from 

intention rather than negligence or recklessness. Legal scholars are becoming increasingly 

worried about the challenge posed by neuroscientific findings to the folk understanding of 

intentions as the result of free decisions. Resolution of this issue requires theoretical 

understanding of the causes and effects of intentions.   

This paper proposes a new neural theory of intention as a brain process that binds 

together information about situations, emotional evaluations, actions, and sometimes also about 

the self. We argue that intentions are semantic pointers, a powerful kind of neural process 

proposed by Chris Eliasmith (in press; Eliasmith et al., 2012). The next section outlines the basic 

claims that we want to make about intentions as semantic pointers, which are subsequently 

fleshed out using a computational model of how intentions can lead to action. This model is 

implemented in a computer program that simulates central cases of how intentions sometimes 

cause actions and sometimes fail to cause actions. Finally, a concluding discussion shows the 

relevance of this theory and model for issues in psychology and philosophy.   

 

2. Outline of a Neural Theory of Intention 

We want to defend the following theoretical claims: 

1.   Intentions are semantic pointers, which are patterns of activity in populations of spiking 

neurons that function as compressed representations by binding together other patterns. 

2.  Specifically, intentions bind representations of situations, emotional evaluations of situations, 

the doing of actions, and sometimes the self. 
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3.  Intentions can cause actions because of neural processes that connect semantic pointers with 

motor instructions. 

4.   Intentions can fail to cause actions because of various kinds of disruptions affecting any of:   

(a)  Evaluation of the situation and doing.  

(b)  Binding of the evaluation, situation, and doing. 

(c)  Processes that connect the intention semantic pointer with motor processes. 

Each of these claims requires exposition. 

 

2.1. Semantic Pointers 

First we need to say more about the nature of semantic pointers. According to Eliasmith (in 

press), semantics pointers are patterns of neural firing activity whose structure is a consequence 

of information compression operations implemented in neural connections. The term “pointer” 

comes from computer science where it refers to a kind of data structure that gets its value from a 

machine address to which it points. Semantic pointers thus provide representations of other 

representations, but those representations are compressed, analogous to JPEG picture files or 

iTunes audio files, which do not encode the full available information. Neural compression 

operations bind semantic pointers into complex symbol-like structures. Semantic pointers can be 

decomposed into the underlying representational structures, thereby enabling the cognitive 

system to control flows of information across different modalities. For understanding how 

intentions cause actions, the decompression operation is crucial, since it specifies how high-level 

symbolic representations set off the low-level motor representations that ultimately govern 

physical actions (see also Schröder & Thagard, 2013). In Eliasmith’s (in press) terms, semantic 

pointers connect shallow semantics with deep semantics. Shallow semantics are given through 
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symbol-like relations to the world and other representations, while deep semantics are 

constituted by relations to perceptual, motor, and emotional information. 

The semantic pointer idea can be understood as a computational specification of various 

well-known theories that have posited symbolic/sensory connections in human cognitive 

systems. For example, Barsalou (1999) claims that symbols are higher-level representations of 

combined perceptual components extracted from lower-level sensorimotor experience. Similarly, 

the mental models of Johnson-Laird (1983) can be understood as multimodal data structures 

ultimately grounded in semantic primitives like emotional and kinesthetic representations. 

Lakoff and Johnson (1980) view cognitive processes as driven by complex conceptual metaphors 

composed of basic metaphors like affection=warmth that are rooted in ubiquitous sensorimotor 

experience and thus shared among humans across cultures. Osgood and colleagues have shown 

that the metaphorical structure of concepts can be described with three universal dimensions 

representing the basic sensory and emotional experiences of approach vs. avoidance, 

power/control, and activity/arousal (e.g., Heise, 2010; Osgood, May, & Miron, 1975). 

We accordingly conjecture that intentions are high-level cognitive phenomena that model 

configurations of lower-level representations in multiple modalities. When bound together, they 

can cause action through routing semantic information to the motor system. Fig. 2 elucidates 

how we think this works: Intentions are semantic pointers, i.e. patterns of spiking activity which 

bind together neural representations of situations and their evaluation along with actions and 

sometimes the self. All of these components are semantic pointers, i.e. patterns of spiking 

activity on their own. The binding operation relies on neural pattern transitions embedded in the 

connection weights between the respective populations of neurons. Bindings of semantic pointers 

are recursive. Therefore, the semantic pointer idea provides a way of reconciling connectionist 
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accounts of distributed representations with more hierarchical and rule-based perspectives on the 

control of action (cf. Botvinick & Plaut, 2006; Cooper & Shallice, 2006). Our theory of 

intentions as semantic pointers thus applies to cases where there are behavioral plans that can be 

decomposed into smaller component actions (Miller, Galanter, & Pribram, 1960).   

 Other kinds of mental representations can also be understood as semantic pointers that 

bind together different sorts of information:  intentions are semantic pointers but not all semantic 

pointers are intentions. Concepts bind together information about examples, prototypical 

features, and explanatory rules (Blouw, Solodkin, Eliasmith, and Thagard, forthcoming).    

Emotions bind together cognitive appraisals and physiological perceptions (Thagard and 

Schröder, forthcoming; Thagard and Stewart, 2011).  The priming of behavior requires binding 

cued concepts with information concerning situations, the self, other persons, and emotions 

(Schröder and Thagard, 2013).   

 We thus propose that intentions are a special instance of a general cognitive process 

whereby a representation emerges from binding other representations. The subsequent section 

elaborates on the elements we consider crucial for the operation of intentions. 
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Fig. 2. How intentions are formed by binding representations of a situation, evaluation, doing, 

and self. The sets of circles indicate neural populations. The arrows indicate flow of information 

performed by neural firing. 

 

2.2. Components of Intention 

Representations of situations include the physical features of the current environment, processed 

primarily through visual areas of the brain, but sometimes also by olfactory, auditory, and tactile 

areas. These basic representations are constraints on the formation of intentions. For example, 

one may want to help a child trapped in a house on fire, but hold back because entrances are 

inaccessible.  There are also important symbolic aspects about how we represent situations, as 

the choice of behaviors in situations is equally strongly constrained by culturally shared 

knowledge about identities and social institutions (MacKinnon & Heise, 2010). For example, one 

would easily recognize the presence of firefighters by visual cues (uniforms, fire trucks, 

equipment) and immediately know that it is their responsibility, not one’s own, to rescue the 

child in danger. Representations of situations are thus complex compounds of physical as well as 

symbolic features of the environment (i.e., deep and shallow semantics). The semantic pointer 
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architecture provides a set of mathematical principles stating how the integration of such 

different representations can be achieved in populations of spiking neurons (Eliasmith, in press). 

  Humans constantly evaluate situations with the emotion system of the brain, and we 

believe these evaluations to be an important building block of intentions. Brain areas with a 

prominent role in processing emotional evaluation include (but are not limited to) the amygdala, 

insula, ventromedial prefrontal cortex, and the nucleus accumbens (for reviews, see Lindquist, 

Wager, Kober, Bliss-Moreau, & Barrett, 2012; Thagard & Aubie, 2008). The emotion system 

mirrors the hierarchical nature of cognition, with more basic and ubiquitous emotions like anger 

and fear more tied to immediate sensorimotor experience, and more complex and culturally 

shaped emotions like guilt and shame of a more symbolic nature. Extending this analogy, we 

have applied the semantic pointer idea to emotion elsewhere (Thagard & Schröder, forthcoming).  

Emotional evaluations of situations vary along a continuum of more automatic/implicit 

vs. deliberative/explicit appraisal (Cunningham & Zelazo, 2007). Most representations of 

symbolic concepts elicit spontaneous affective evaluations that reflect common cultural 

knowledge (Heise, 2010; Osgood et al., 1975). Elsewhere, we have argued that those affective 

meanings of concepts play a major role in behavioral priming, where subtle cues in the 

environment cause people to align their behaviors automatically and without conscious 

awareness (Schröder & Thagard, 2013; cf. Bargh, 2006; Bargh & Chartrand, 1999). However, 

people might also deliberately choose to ignore automatic emotional associations as a source of 

information for their judgments, if they conflict with consciously endorsed goals and values 

(Gawronski & Bodenhausen, 2007). In current psychological theorizing, such dissociations 

between implicit and explicit evaluations play a major role in explaining intention-action gaps. 

For example, one might intend to quit smoking or excessive eating, as one actively evaluates 
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these behaviors as bad for one’s health, but nevertheless have implicit positive representations of 

these behaviors. Especially under limitations of cognitive resources, the implicit positive 

attitudes defeat the explicit negative ones, causing a failure to implement intentions (Chassin, 

Presson, Sherman, Seo, & Macy, 2010; Friese, Hofmann, & Wänke, 2008; Hofmann & Friese, 

2008; Hofmann, Gschwendner, Friese, Wiers, & Schmitt, 2008; Ward & Mann, 2000). This kind 

of contest is consistent with the proposal by Norman and Shallice (1986) that actions under 

conscious control involve a competitive mechanism in addition to those used in automatic 

actions. 

Intentions also require representations of the intended actions themselves. We understand 

them not just as linguistic descriptions but also as patterns of activation in areas of the brain 

involved in processing motor instructions. Neuroscientific evidence corroborates the notion of a 

non-verbal “action vocabulary” in pre-motor cortex, consisting of abstract representations of 

underlying motor programs in relation to goals (Fogassi, 2011; Gallese, 2009; Rizzolatti, Fadiga, 

Gallese, & Fogassi, 1996). The analogy to semantic pointers as compressed models of deeper 

sensorimotor representations is straightforward (see DeWolf & Eliasmith, 2011, on motor control 

within the semantic pointer architecture), and it is just another step up in the hierarchy of the 

cognitive system to a symbolic representation of actions with language. Indeed, there is abundant 

empirical evidence for the priming of verbal concepts to facilitate mental simulations of 

movements (e.g., Springer & Prinz, 2010) as well as action itself (for review, see Bargh, 2006). 

The semantic pointer idea provides a mechanistic explanation of the neural processes underlying 

those priming effects (Schröder & Thagard, 2013).   

Finally, we believe that intentions sometimes involve representations of the self, on 

occasions when people explicitly think of themselves as planning to do something. Intentions are 
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about one’s own actions in specific situations. Self-representations are semantic pointers that 

result from binding together self-related information in various modalities, from abstract verbal 

characterizations such as professor to the associated emotional meanings to kinesthetic 

representations such as swinging a golf club. The resulting dynamic neural process theory of the 

self reconciles conflicting philosophical views such as Kantian unified consciousness and 

Humean non-unified bundles of perceptions (Thagard, in press).  

Some of the components of self-representations are self-concepts, emotional memories, 

and the sensorimotor experience of agency. Self-concepts are linguistic labels that people apply 

to themselves. In so doing, they make use of culturally constructed categories, crystallized in 

language, to make sense of themselves and their social experiences (MacKinnon & Heise, 2010). 

Through binding representations of past emotional episodes into the current self-representation, 

people experience a sense of continuing coherence of their affective states. At the core of self-

representations lies a sense of agency, which results from “intentional binding” of afferent motor 

information with efferent perceptual input (Tsakiris & Haggard, 2004). As a result, individuals 

experience themselves as causes of changes in their environments. Perceived agency goes along 

with characteristic shifts in time perception: Subjects who believe that they caused a tone 

through pressing a button voluntarily judge the time elapsed between action and tone to be 

shorter than subjects who knew that their pressing the button was caused by transcranial 

magnetic stimulation (Haggard, Clark, & Kalogeras, 2002). Such effects can be interpreted as 

experimental evidence for binding of efferent and afferent information to underlie the sense of 

agency. We conjecture that this process provides the basis for the representation of self. The 

result of efferent-afferent binding is a semantic pointer that can be stored in memory and later be 

retrieved and itself recursively bound into a different higher-level semantic pointer. Thus, 
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previous sensorimotor experiences of agency form the basis for later inclusion of the self in 

complex intentions. 

 

3. A Neurocomputational Model of Intention 

To develop our theory of intention further, we now present a computational model of interacting 

neurons that yields simulations of important psychological phenomena. We use the Neural 

Engineering Framework of Eliasmith & Anderson (2003) to simulate flows of current in 

different, interconnected populations of neurons. All neurons are modeled as standard Leaky 

Integrate-and-Fire neurons that receive current from input neurons, integrate these inputs with 

some loss, and produce as outputs firing behaviors that send current to other neurons. 

Mathematical details are explained in Eliasmith & Anderson (2003) and in the appendix below.  

The model consists of six different groups of interacting neurons, meant to represent six 

different brain areas: sensory cortex, prefrontal cortex, the basal ganglia, the amygdala, anterior 

cingulate cortex, and the supplementary motor area. The connections among these areas are 

shown in Fig. 3, consistent with neural anatomy. The model is loosely based on Tsakiris and 

Haggard’s (2010) review of the neural structures underlying the control of intentional action. It is 

also compatible with Cunningham and Zelazo’s (2007) iterative cycle of evaluative reprocessing, 

a neuroanatomical model of the interplay of automatic (implicit) vs. deliberate (explicit) 

evaluation of situations. We will see that the automatic/deliberate distinction is crucial to 

psychological understanding of why intentions sometimes fail to produce actions. We 

acknowledge that our model is extremely simplified, and we do not claim to explain the neural 

data that support the relevance of these structures to intention and action. Our model is consistent 
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with these data, but the empirical support for the model comes primarily from the simulation of 

the results of psychological experiments in section 4.   

 

  

Fig. 3: Functional components of the model of intention, consisting of six groups of neurons and 

synaptic connections shown by arrows. Abbreviations:   PFC - prefrontal cortex; BG - basal 

ganglia; ACC - anterior cingulate cortex;  and SMA - supplementary motor area. 

 

The input to the model is entirely through sensory cortex, where we trigger different 

patterns of firing for the different stimuli that can be given to the model.  Output is from the 

supplementary motor area (SMA), where different patterns of neural firing represent the different 

actions the model can take. Taking SMA as the output structure of our model is consistent with 

research on readiness potentials: Activation over the SMA, measured with EEG, correlates with 

participants reporting a felt “urge” to start an action. This has been interpreted as the neural 

process underlying phenomenological intentions (Libet, 1985; see Tsakiris & Haggard, 2010, for 

review). All of the firing patterns in the components of our model are randomly initiated. 

In order to have the model perform complex tasks, we need to manipulate these patterns 

internally.  To do this, we treat each pattern of firing as a different semantic pointer, allowing us 

to define computations to combine and extract information from these patterns.  In particular, our 
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model relies on neural pattern transitions: creating synaptic connections between two groups of 

neurons such that if a particular pattern is part of the activity in the first group, then the second 

group of neurons will be driven to some other pattern of activity.  This allows us to transform 

and manipulate semantic pointers using pattern transitions: for example, we may say that if the 

pattern for “the letter A” is in the sensory system, then we want the pattern for “press button 1” 

to appear in the ACC. We may also combine different input patterns (e.g., semantic pointers for 

sensory input and for emotional evaluation) to produce an output pattern (e.g., semantic pointer 

for intention). Once we have defined what pattern transitions we want, we use the Neural 

Engineering Framework to calculate the optimal synaptic connection weights to give us those 

transitions (Eliasmith & Anderson, 2003). Mathematical details are outlined in the appendix 

below. 

We also define a few fixed sets of connections regardless of the pattern transition rules.  

For the prefrontal cortex and the supplementary motor area, we include feedback connections 

that cause these neurons to maintain whatever pattern they are currently producing.  This 

feedback provides a memory (since a pattern can be maintained even if the input is removed), 

and gives a gradual transition between patterns (i.e. if there is an input, the pattern will slowly 

change to match that desired pattern). This allows us to store an arbitrary semantic pointer over 

time. 

For the connection between the anterior cingulate cortex (ACC) and the supplementary 

motor area, we combine the pattern in the ACC with the pattern in the amygdala. The pattern in 

the amygdala models the value of the current action.  The stronger this value, the more the SMA 

will be driven to store whatever pattern is in the SMA.  This preference allows the model to 
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quickly perform actions if they are thought to be very good, and even to decide not to do an 

action if it realizes it would have a low value. 

Finally, the basal ganglia area allows the model to choose one action out of a list of 

possible actions.  The neural connections for this group are more complex, using an existing 

selection model of the basal ganglia (Stewart, Bekolay, & Eliasmith, 2012).  This model follows 

a similar process of having rules that map one pattern onto another pattern, but forces only one 

rule to be active at a time. This is responsible for providing a “serial bottleneck” to cognition, 

and has been used to model complex cognitive tasks such as solving the Tower of Hanoi problem 

(Stewart & Eliasmith, 2011). 

 

4. Simulations 

A neurocomputational model of intention should apply to a wide array of phenomena that have 

not previously been connected.  On the one hand, social psychology has treated intentions as 

high-level symbolic phenomena involving planning for the future, without caring about the 

details of implementation in the brain (e.g., Fishbein & Ajzen, 1975, 2010). On the other hand, 

intention-related work in cognitive neuroscience has predominantly dealt with low-level tasks 

like moving hands or fingers or adding numbers in present situations (e.g., Cunnington et al., 

2006; Haynes et al., 2007; Libet, 1985).  We believe that semantic pointers allow us to bridge 

this gap, resulting in computational models that address both high-level and low-level accounts 

of intention.  To demonstrate this, we now present a series of five simulations, starting with a 

simple model and adding to it, resulting in a single model that accounts for five different types of 

intentional activity. 
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 First, we simulate an experiment where the participants were expected to intentionally 

choose one among six specific finger gestures to produce while their brain activity was recorded 

with fMRI (Cunnington et al., 2006). The simulation involves causing an action by connecting a 

representation of the situation with a representation of doing. The second simulation additionally 

involves emotional evaluation. We model a situation where a person drinks alcoholic beverages 

at a party after forming the deliberate intention to do so, which results from favorable attitudes 

and social norms towards drinking (Fishbein & Ajzen, 2010; Glindemann, Geller, and Ludwig, 

1996). The third simulation deals with a dissociation between automatic and deliberative 

emotional evaluation (Cunningham & Zelazo, 2007; Deutsch & Strack, 2006). We model how a 

person initially feels inclined to smoke a cigarette but then refrains from it because of the 

deliberate intention to quit smoking due to negative health effects.  Fourth, we simulate how 

intentions can fail when cognitive load prevents the deliberative pathway from interrupting an 

initial affective action tendency (e.g., Friese et al., 2008; Hofmann & Friese, 2008; Ward & 

Mann, 2000). Finally, we show how neural representations can be combined, stored in a 

semantic pointer, and replayed later to produce actions. This simulation models implementation 

intentions, a special case of planning and future intentions that have been effective as a strategy 

in psychotherapy to overcome intention-action gaps (Gollwitzer, 1999). 

 To create this model, we use a software package called Nengo that generates neural 

networks in accord with the Neural Engineering Framework (http://www.nengo.ca). These 

simulations are very different from conventional connectionist models using hand-coded localist 

representations or distributed representations produced by training. Instead, networks are 

produced analytically by specifying neural populations and the mathematical functions that they 

are required to compute. Details as to how to represent patterns using spiking neurons and how 
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to compute the connection weights required to connect these neurons so as to perform the 

functions described below are provided in the appendix. This results in a model using 11,648 

spiking neurons in total. Since these neurons are organized to represent and transform semantic 

pointers in general (rather than particular patterns of activity), the model can respond 

appropriately to a widely varying range of stimuli, rather than being restricted to those 

representations that it was trained on.   

 Using semantic pointers within the Neural Engineering Framework provides an approach 

to understanding the relation between representation and behavior that is intermediate between 

explicit goal and schema representations (Cooper and Shallice, 2006) and distributed 

representations in recurrent networks (Botvinick and Plaut, 2006). Semantic pointers are fully 

distributed across a neural population, but the following simulations show how distributed 

representations can function much like symbols.  To demonstrate the behavior of the models over 

time, we show the spiking output of different groups of neurons, along with an indication of the 

semantic pointer that mostly closely matches the current firing pattern of those neurons.  For 

example, in Fig. 4 we show just the sensory system of our model as we change the input to be the 

randomly chosen semantic pointers for “A”, “B”, and then “A” again.  The pattern of firing 

activity for each semantic pointer is different, but interestingly the overall average firing rate 

across the population is similar for each one.  Every semantic pointer will have its own unique 

firing pattern.  
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Fig. 4: Neural response of 16 sensory neurons (see Fig. 3) representing the randomly generated 

semantic pointers “A” and “B”.  The box for neuron firing pattern has 16 rows, one for each 

neuron.  A mark in a row indicates that the neuron is firing at a particular time. The neurons have 

some random variability, but distinct overall patterns correspond to distinct semantic pointers. 

 

 A crucial feature of these semantic pointer models is that we can build models that are 

generic across semantic pointers.  That is, we can create a neural model that will, for example, 

pass a semantic pointer from one population to another, and this will work even for semantic 

pointers that it has never seen before.  That is, the model is not limited to a particular small set of 

patterns of activity that it is “trained” on.  Rather, we use the Neural Engineering Framework to 

find a set of connection weights that will reliably transfer information for any possible semantic 

pointer.  This feature is vital to the following simulations, since at each stage we add new 

semantic pointers for new conditions. 

 

4.1. Simulation 1: Motor Intentions 

Our first simulation is based on the free choice task from Cunnington et al. (2006).  In this task, 

certain stimuli are paired with certain actions (in the original study, hand gestures from 

American Sign Language).  For example, if the subjects see , they must respond in kind by 
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making the same gesture .  Similarly, if they see , they must respond with .  However, 

when shown a special stimulus (in our simulations, a question mark [?]), the subject must choose 

to respond with either gesture.  This is meant to show the neural difference between a free choice 

and a forced response: more neural activity is seen in the pre-frontal cortex (PFC) and basal 

ganglia (BG) when making a free choice than in the forced condition (Cunnington et al., 1996, p. 

1297). 

 We implement this task in our model by defining semantic pointers for each stimulus ( , 

, and ?) and each response (  and ).  These can be arbitrarily complex combined 

representations of the visual stimulus and the motor commands needed to create these gestures.  

Since a full model of this process would require a complete model of the human visual and 

motor systems (and thus be well outside the scope of this paper), we select an arbitrary firing 

pattern for each stimulus (shown in the top row of Fig. 5) and each motor action (shown in the 

bottom row of Fig. 5).  It should be noted that, as expected, the firing pattern for the visual 

stimulus  is quite dissimilar from the motor command needed to generate the same gesture 

(Fig. 5, left-most column, top and bottom row). 

 Once these semantic pointers are defined, we need to construct the neural connections 

that will cause the model to perform as desired.  For the forced actions, this is done by forming 

connections between the sensory area and the ACC that implement the desired pattern 

transitions.  In particular, we add the transition rules “visual( )→motor( )” and 

“visual( )→motor( )”.  That is, we use the Neural Engineering Framework (Eliasmith & 

Anderson, 2003) to create neural connections between the sensory and ACC areas such that if the 

semantic pointer in the sensory system contains the visual representation of , the neurons for 
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the corresponding pattern in ACC will be stimulated (and the same for ). For mathematical 

details, see the appendix. 

 To implement the choice behavior, we add further neural connections.  First, between 

sensory and pre-frontal cortex (PFC) we add “?→?”, so that the fact that we have to make a 

choice is transferred to PFC.  Then in the basal ganglia (BG) we add the two neural transition 

rules “?→ ” and “?→ ”.  Thus, if the “?” is shown to the sensory system, a corresponding 

semantic pointer will be transferred to PFC. In turn, this will stimulate the BG neurons to drive 

the PFC to initiate either  or  (randomly chosen based on noise in the neural 

representation).  Finally, we add transition rules between PFC and ACC that simply transfer the 

patterns: “ → ” and “ → ”.  This scenario does not use the amygdala, since none of these 

patterns have an associated emotional value representation. 

The resulting behavior is shown in Fig. 5, displaying the firing activity for 128 neurons in 

each of the three brain areas relevant to this task (sensory, PFC, and ACC).  The different 

patterns of activity represent different stimuli (sensory) and actions (PFC and ACC).  For each 

brain area and time interval, the degree of firing of each of the neurons is shown by dark shading.  

For example, the row for sensory neurons shows how they each fire (or fail to fire) in response to 

different sensor stimuli.  Activity in the other areas is entirely driven by synaptic connections as 

discussed.  Notice that when the model sees a  or a  (top row), it accurately produces the 

appropriate output pattern (bottom row).  Furthermore, when shown a ?, it will produce one of 

the two possible patterns.  We note that the PFC is only strongly active when it is making a free 

choice.  This behavior of the model is compatible with the fMRI data from Cunnington et al. 

(2006). 
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Fig. 5: Behavior of the model when performing the free choice task. When shown a , the 

model responds with the motor pattern for .  When shown a , the model responds with the 

motor pattern for .  When shown a ?, the model chooses either  or  (via the PFC), and 

then performs that action.    

 

4.2. Simulation 2: Intentions involving Emotional Evaluation 

For our second example, we examine a social situation that includes emotional evaluation. For 

this task, we assume that the action produced by the automatic direct behavior pathway (the 

connection between sensory cortex and ACC) is in accord with the deliberative pathway (the 

connection via PFC).  To match the situation from a study by Glindemann et al. (1996), we 

consider a situation where the subject is offered a drink and acts autonomously. 

To control this behavior, we add pattern transition rules to the model.  These are new 

transformations in addition to those rules considered in the previous simulation.  Since these are 

implemented as semantic pointers in the NEF, we can use the NEF to adjust the existing synaptic 

connections to implement these new rules as well, rather than creating entirely new connections 
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for each rule.  From sensory to PFC we add a rule DRINK→DRINK, which simply passes the 

pattern for the DRINK semantic pointer into working memory.  We also add a rule 

OFFER→TAKE between sensory and ACC, representing a standard default action of taking 

something if it is offered. This corresponds to a social norm (Fishbein & Ajzen, 2010).  

Importantly, since semantic pointers can be combined, we can now provide a single sensory 

input of “OFFER+DRINK” and this combined pattern of neural activity will correctly trigger the 

two separate rules DRINK→DRINK and OFFER→TAKE. 

For this simulation, we must also consider the behavior of the amygdala and SMA. 

Connections from the sensory cortex and PFC are configured so that both follow the transition 

rule “DRINK→GOOD”.  Fig. 6 illustrates the simulation. The patterns for OFFER and DRINK 

are both presented at t=0.2s.  This presentation results in the PFC getting the pattern for DRINK, 

which is evaluated in the amygdala as GOOD.  This can be seen in the chart by the change in 

neural activity in the amygdala around 0.25s.  This evaluation allows the automatically chosen 

action TAKE to be quickly passed to the SMA (by t≈0.3s), which would then trigger the 

appropriate response. 

The overall idea, then, is that when offered something (represented by presenting the sum 

of the patterns for OFFER and DRINK to the sensory area), the default action is to take it.  This 

does not require cognitive effort (i.e. it does not require the deliberative activity of the PFC).  

However, in this case the PFC is in agreement with the automatic pathway and increases the 

strength of the pattern being sent to SMA, resulting in a fast decision to take the drink. 
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Fig. 6: Behavior of the model when the automatic and deliberative pathways for emotional 

evaluation are in accord.  For each brain area such as PFC, the chart shows spiking of each of 

128 neurons:  darker means more spiking.    

 

4.3. Simulation 3: Intentions Override Affective Action Tendencies 

The third simulation (Fig. 7) considers a situation where the deliberative pathway overrides the 

automatic pathway.  In this example, the subject is offered a cigarette. We model this by 

presenting both the patterns for OFFER and SMOKE to sensory at t=0.2s.  As before, the 

automatic pathway will perform its default action to TAKE the cigarette.  The nature of semantic 

pointers is such that the combined semantic pointer OFFER+SMOKE will trigger exactly the 

same activity in ACC as was seen in the previous simulation, even though the spiking activity 

OFFER+DRINK is different from the spiking activity for OFFER+SMOKE.  In this case, 

however, at the same time the pattern for SMOKE will be passed to working memory (PFC), 

rather than the pattern for DRINK as in the previous case.  The basal ganglia have a transition 

rule for SMOKE→UNHEALTHY (representing explicit knowledge), and there is a transition 

rule between PFC and the amygdala for UNHEALTHY→BAD, overriding the initial evaluation 
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of SMOKE as GOOD (at t=0.25s in the amygdala).  The presence of this negative evaluation 

stops the TAKE action from being passed from the ACC to the SMA, thus preventing the action 

from occurring.  This prevention is an instance of successful self-control (cf. Baumeister & 

Tierney, 2011; Vohs & Baumeister, 2010). 

 

 

Fig. 7: Behavior of the model when the automatic and deliberative pathways are not in accord.  

 

4.4. Simulation 4: When Intentions Fail  

We next consider the case where there is a heavy cognitive load that stops the deliberative 

pathway from overriding the automatic pathway (e.g., Friese et al., 2008).  Here, we add a 

transition rule for the PFC back to itself (via the basal ganglia) that says WORK→WORK.  Once 

the PFC contains the pattern for WORK, it will continue thinking about work.  We now continue 

with exactly the same stimulus as in simulation 3.  In this case, however, when OFFER+SMOKE 

is presented to the sensory cortex, the pattern for SMOKE will not be successfully transferred to 

PFC (or at least it will be much weaker than the pattern for WORK).  This, in turn, will mean 

that the deliberative pathway will not pass its evaluation on to the amygdala and ACC, and so the 
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automatic TAKE action will occur.  Hence a subject who is distracted by thinking about other 

things will not follow through on the intention to avoid smoking.  This result is shown in Fig. 8. 

 

 

Fig. 8: Behavior of the model when the automatic and deliberative pathways are not in accord, 

but the deliberative pathway is busy.  For the first 0.2s, the pattern for WORK is presented.  This 

locks the PFC into the pattern for WORK.  We now present (at t=0.4s) the pattern for 

OFFER+SMOKE.  Since the PFC is busy, it is unable to interrupt the automatic pathway as it 

could in Fig. 7.  As a result, the TAKE action is selected. 

 

4.5 Simulation 5: Implementation Intentions 

Finally, we turn to a case where neural representations must be combined, stored, and replayed 

when appropriate.  As discussed in section 2.1, it is possible to combine the representations in 

different parts of the brain into a single semantic pointer.  Furthermore, this compressed 

representation can also be split back apart, re-stimulating an approximation of the original neural 

state. Simulation 5 shows how to model future intentions, and makes explicit the role that 
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semantic pointers can play in producing actions.  In particular, the semantic pointer binds 

together many different representations in different parts of the brain, producing a new pattern: a 

single compact representation.  This new pattern can be stored and recalled efficiently, allowing 

the brain to recreate an approximation of a previous mental state. 

 We use this capability to model implementation intentions, which are cognitive rules that 

take an environmental cue and turn it into a commitment to a particular course of action 

(Gollwitzer, 1999).  Consider someone who wants to form an intention to not smoke when 

offered a cigarette.  Importantly, since an implementation intention is based on sensory input (the 

environmental cue), then this should succeed even if the individual is currently distracted 

thinking about other things, as in Simulation 4.  Instead of relying on PFC to follow the 

reasoning SMOKE→UNHEALTHY, here the model relies on a stored semantic pointer that can 

be triggered to recreate the original intention to not smoke.  The new “memory” component for 

storing and replaying this compressed representation is shown in Fig. 9. 

 

 

Fig. 9: The model extended for implementation intentions.  The memory system combines 

representations from different cortical areas (as per Fig. 2), and reconstructs the original pattern 

when triggered by a sensory cue of OFFER+SMOKE. 
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 It is important to remember that we can create this memory component to work for any 

semantic pointer.  That is, we can use the NEF to find connection weights to and from the 

memory that work without explicit training on the data to be compressed and decompressed.  

This is a key advantage of semantic pointers: since they are built up via a compression and 

decompression process, we can build neural systems that correctly function for any input values, 

allowing the intention system to create new implementation intentions and apply them without 

retraining or adjusting the connection weights in the rest of the model. 

 As with Simulation 4, we test the model by first presenting it with the sensory stimulus 

for WORK.  This is passed to the PFC and simulates the heavy cognitive load that caused the 

intention in Simulation 4 to fail.  In this extended simulation, however, we have added to the 

memory a semantic pointer representation of the global pattern of neural activity from 

Simulation 3 (in which the intention was successful).  Now, when the OFFER+SMOKE stimulus 

occurs, that memory is decompressed, pushing the spiking patterns of the PFC, ACC, and SMA 

back to successful patterns from Fig. 7.  Our model thus explains why implementation intentions 

can be an effective strategy to reduce intention-action gaps: Semantic pointers allow brains to 

divert the cognitively demanding intentional decision-making process to a point in time prior to 

the critical situation. 

 

5. Discussion 

Our model is compatible with current theorizing in psychology of the relationship between 

intention and action. We propose that it is a computational specification of contemporary views 

of action control as resulting from interactive competition between at least two different ways of 
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processing information:  deliberative (reflective, explicit, controlled, system 2) vs. automatic 

(impulsive, implicit, unconscious, system 1) (e.g., Cunningham & Zelazo, 2007; Deutsch & 

Strack, 2006; Fazio & Towles-Schwenn, 1999; Kahneman, 2011; Lieberman, 2003; Norman & 

Shallice, 1986; Smith & DeCoster, 2000; Strack & Deutsch, 2004). The theory of planned 

behavior is the most influential psychological account of deliberative intentional action (see Fig. 

1; Ajzen, 1991; Fishbein & Ajzen, 1975; 2010). It is largely compatible with philosophically 

influential views of the function of intentions for planning and coordination (Bratman, 1987). We 

first discuss the relations of our model to this perspective, before we turn to the contrasting 

vision of action as controlled by automatic, implicit processes. As demonstrated in our 

simulation 4, dissociations between the two systems of action control can explain instances of 

intention-action gaps, called weakness of will or akrasia in philosophy.  

 The theory of planned behavior (TPB) has been applied widely, mostly in contexts where 

psychology is used to change people’s behaviors in ways deemed desirable by governments, 

action groups, marketers, doctors, or other stakeholders (for review, see Fishbein & Ajzen, 

2010). The theory is conceptually similar to the belief-desire-intention model of action control, 

influential in philosophy and artificial intelligence (e.g., Bratman, 1987; Woolridge, 2000). 

Fishbein and Ajzen posit that actions follow from behavioral intentions. In turn, attitudes toward 

a behavior, resulting from beliefs about its expected outcome combined with the value (≈desire) 

of that outcome, predict intentions. However, as in Bratman’s (1987) model, beliefs and desires 

(i.e., attitudes) are not sufficient to form a commitment to an action (see Fig. 1). Perceived social 

norms, reflecting the anticipated reaction of significant others, and perceived behavioral control, 

reflecting a subjective assessment of whether one is able to carry out the action, are the two 

additional components.  
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 Despite its influence, the TPB has important conceptual limitations, as it leaves open 

what intentions actually are. Fishbein and Ajzen construe intentions as “the subjective 

probability of performing a behavior” (Fishbein & Ajzen, 2010, p. 40). They call for the 

empirical operationalization of an intention to be as close as possible to the behavior itself in 

order to enable predictive success (they call this matching “levels of generality”; Fishbein & 

Ajzen, 2010, p. 30). The problem with this definition is that intentions are not conceptually 

different from the corresponding actions, and therefore it is hard to argue that intentions cause 

actions (Greve, 2001). In contrast, we argue that intentions are semantic pointers, i.e. neural 

processes emerging from binding different representations, and we showed in simulations how 

intentions as semantic pointers can cause actions by routing information to the motor areas of the 

brain. We also showed how the semantic pointer hypothesis of cognition enables us to relate the 

conceptual components of high-level theories like the TPB and the similar belief-desire-intention 

model to neural processes. For example, in our simulation 2, we implemented Fishbein and 

Ajzen’s concept of social norms as transition patterns between neural populations. A pattern of 

neural activity representing someone offering a drink at a party caused the emergence of another 

firing pattern representing the action of taking the drink. Hence, we showed in principle how 

social norms can be embedded in the connection weights between neural populations. Similarly, 

the neural representations of situations and emotional evaluations are required for the beliefs and 

desires, respectively, in philosophical theorizing about intentions. Intentions can contribute to 

planning, as argued by Bratman (1987), because the semantic pointers that we take to constitute 

intentions are fully capable of participating in the partial, hierarchical, and conduct-controlling 

mental states that Bratman describes. Intentions include a kind of commitment not found in 

either beliefs or desires because they require binding together the representations of situations in 
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sensory and prefrontal cortices and emotional evaluation in the amygdala with links to action 

shown by the involvement of the supplemental motor area. 

 The TPB also has empirical limitations. Meta-analytic reviews of empirical studies under 

the TPB paradigm revealed that behavioral intentions roughly account for between a fourth and a 

third of the variance in actual behaviors – the predictive success is higher when self-reports of 

behaviors are used as criterion variables, and lower for objective measures (Armitage & Conner, 

2001; Shepperd, Hartwick, & Warshaw, 1988). For the standards of social science, predictive 

accuracy of that size is certainly notable and makes the theory a suitable framework in many 

applied contexts. However, it is also apparent that the TPB is far from providing a complete 

picture of the intention-action relationship since two thirds or more of behavioral variance 

remain open to further inquiry. 

 These limitations are unsurprising in light of abundant empirical studies that have 

demonstrated behavior to be controlled by automatic, unconscious processes rather than 

deliberative decision-making. For example, studies under the influential behavioral priming 

paradigm have demonstrated how people’s actions are often biased by the mere cognitive 

activation of concepts through cues in the environment (for reviews, see Bargh, 2006; Bargh & 

Chartrand, 1999).  At first sight, this perspective on behavioral control differs sharply from any 

approach that emphasizes the role of deliberative intentions, but the neural mechanisms 

underlying both forms of action generation appear to be surprisingly similar. Elsewhere, we have 

proposed a neurocomputational model of automatic social behavior, which is also based on 

semantic pointers and whose architecture overlaps with the present model of intention (Schröder 

& Thagard, 2013). Based on the theory that all concepts are grounded in culturally shared 

affective meanings (Heise, 2010; Osgood et al., 1975), we have argued that behavioral priming 
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effects occur because primed concepts automatically elicit specific evaluations in the affective 

networks of the brain, which, in turn, activate representations of emotionally congruent actions. 

This process was modeled in the same way as the automatic pathway in the present model of 

intention, with primed concepts and related behaviors implemented as semantic pointers in the 

sensory and supplemental motor area networks, respectively; the amygdala and anterior cingulate 

cortex provided the connections (Schröder & Thagard, 2013).  

 The essential difference between the two models is that the intention model has an 

additional deliberative pathway, consisting of the prefrontal cortex and basal ganglia. In our 

simulation 3, we showed how intentions operate as semantic pointers in prefrontal cortex, 

binding underlying representations in ways that interrupt and change impulsive action tendencies 

by overriding the initial emotional evaluation of the action. This cortico-limbic feedback loop is 

compatible with Cunningham and Zelazo’s (2007) iterative reprocessing model of evaluation, 

based on a review of the neural structures that may underlie the fundamental dichotomy between 

impulsive and intentional control of action. The dynamic competition of automatic and 

deliberative action control in the brain is currently the most widely believed psychological 

explanation for the frequent failure of intentions to produce actions. In our simulation 4, we 

showed accordingly how affect-driven action tendencies win over intentional choices when 

working memory capacity is limited, in line with evidence from psychological studies on health-

related behaviors (Chassin et al., 2010; Friese et al., 2008; Hofmann & Friese, 2008; Hofmann et 

al., 2008; Ward & Mann, 2000).  

Similarly, our model can readily explain procrastination, an important psychological 

phenomenon where people delay working on their tasks despite their deliberate commitment to 

get those tasks accomplished (for review, see Steel, 2007). It was shown that procrastination is 
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caused by the aversiveness of the task in question itself along with a cognitive inability to 

override the resulting negative affect with more positive evaluations that stem from the goals 

associated with finishing the task (e.g., Ferrari, 2001; Onwuegbuzie & Collins, 2001; Steel, 

2007). This behavior is exactly the reverse of what happens in our simulations 3 and 4, where the 

immediate, impulsive emotional evaluation of the action (smoking a cigarette) was positive and 

needed to be replaced by more negative appraisals of the long-term consequences of the action. 

In the case of procrastination, the initial negative affect associated with the task needs to be 

replaced with more positive appraisals of the long-term consequences of tackling the task, and 

this requires cognitive effort and capacity. 

To summarize, our model presents a detailed hypothesis about the neural mechanisms 

that may underlie the control of action according to recent social psychological theories, 

contributing to the new field of social neuroscience (Todorov, Fiske, & Prentice, 2011). We think 

that Eliasmith’s (in press) semantic pointer hypothesis and the computational tools that 

implement it provide a framework for going beyond purely data-driven research in social 

neuroscience. Rather than merely correlating brain areas to psychological functions, we 

described neurocomputational mechanisms that plausibly cause psychological phenomena.   

Moreover, we have shown how automatic and deliberate processes can interact. It is important to 

note that our model does not assume qualitatively distinct mechanisms for these processes, but 

rather, the competition between implicit and explicit aspects of action control emerges from the 

dynamical binding and feedback mechanisms of semantic pointers within the same information-

processing system. Hence our approach is compatible with the view that the automatic-

deliberative dichotomy is more phenomenological than based on two clearly distinguishable 
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systems in the brain (cf. Cunningham & Zelazo, 2007; Kruglanski & Thompson, 1999; Newell & 

Shanks, in press).   

  Our methodological approach to the nature of intentions contrasts with the usual 

philosophical one of analyzing the everyday concept of intention by attention to how people talk 

about their intentions and other mental states.   Instead, we look at robust phenomena about 

intention revealed by controlled experiments in psychology and neuroscience, and seek to 

explain these phenomena by describing neural mechanisms that can produce these phenomena.    

The connection between the postulated mechanisms and the phenomena to be explained is shown 

by the development of a computational model that employs the proposed mechanisms to 

simulate the phenomena of interest (Thagard, 2012b, ch. 1).     

 Our hypothesis that intentions are semantic pointers may seem rather audacious given the 

currently limited extent of knowledge about how brains carry out complex mental tasks.   The 

procedure we have employed is increasingly fruitful in cognitive science and operates as follows.  

First, identify an important mental phenomenon such as the ways in which intentions can lead 

and fail to lead to behavior.    Second, use what is known about brain operations to form 

conjectures about the kinds of representations and processes that might produce the phenomena, 

for example semantic pointers and their associated neural operations.    Third, spell out these 

conjectures with sufficient rigor that they can be implemented in computer simulations, as we 

have done using the Nengo simulation software. Fourth, determine whether the computer 

simulations match the behavior of people in psychological experiments, as we have done in 5 

cases.  Fifth, argue that the mechanisms specified provide the best available explanation of the 

mental phenomena, which justifies the tentative identification of a familiar mental process 

(intention) with a novel neural process (semantic pointers). Of course, like all theoretical claims 
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in science, the proposed identification is fallible and may be found wanting either because there 

are important phenomena for which it cannot account or because better theories come along.    

The procedure for identifying mental processes with neural processes is no different from the 

many cases in the history of science where everyday notions become understood scientifically 

through their identification with newly proposed mechanisms; for example, fire is rapid 

oxidation and electricity is the flow of electrons (Thagard, forthcoming). Philosophical 

arguments that mental states cannot be identified with neural processes are dealt with in Thagard 

(2010).  

 We have argued that intentions are patterns of activity in populations of spiking neurons 

that function as compressed representations by binding together representations of situations, 

emotional evaluations of situations, the doing of actions, and the self.  This account provides an 

answer to the central puzzle addressed by Anscombe (1957) of how the same concept of 

intention can apply to different forms such as intentions for the future and current intentional 

actions.  On our view, what such cases have in common is the same underlying neural 

mechanisms involving representations of situations, evaluations, doings, and the self.  Due to the 

recursive nature of semantic pointers, current intentions can be combined with anticipated 

cognitive cues of future situations, stored in memory and later retrieved as in simulation 5, where 

we modeled Gollwitzer’s (1999) implementation intentions.  

 There has been much debate about the nature of shared intentions (e.g.  

Alonso, 2009; Tomasello, 2008). From a neurocomputational perspective, the question of 

whether two people can have the same intention is no different from whether they have in 

common other mental states such as beliefs, desires, and sensory experiences. In all these cases, 

sameness cannot mean having identical patterns of neural activity, because no two people have 
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exactly the same neural connections or sensory inputs.  Nevertheless, most people’s brains have 

much commonality in structure and process, and people in similar circumstances can have 

functionally similar semantic pointers that bind together neural representations of situations, 

evaluations, and actions that have much in common across different people.  In such cases, it 

makes sense to talk loosely and metaphorically of shared intentions.   

 By far the most contentious philosophical issue connected with the nature of intention 

concerns the existence of free will, a topic important for ethics because of the common view that 

moral and legal responsibility require free action.  Some neuroscientists and psychologists have 

argued that empirical findings make it implausible that free will exists (e.g., Harris, 2012; Libet, 

1985, 2004; Wegner, 2003). Dualist philosophers reject these claims out of hand, but even some 

non-dualists such as Dennett (2003) and Mele (2009) argue for conceptions of free will that they 

think are compatible with increased neuropsychological understanding of mental causation.     

All of these debates have taken place without any specification of the neural mechanisms that 

plausibly link intention and action. Our model of intention has strong implications for questions 

about free will and responsibility, but these will receive extended discussion elsewhere.  

 

6.  Conclusion 

 This paper has developed the first detailed neurocomputational account of how intentions 

and emotional evaluations can lead to action. We have proposed that actions result from neural 

processing in brain areas that include the basal ganglia, prefrontal cortex, anterior cingulate 

cortex, and supplementary motor area. Undoubtedly there are interactions with other brain areas, 

for example the mid-brain dopamine system that is also important for emotional evaluations 

(Litt, Eliasmith, and Thagard, 2008; see also Lindquist et al., 2012). Nevertheless, we have 
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shown by simulations that a simple model can account for intention-action effects ranging from 

gesturing to failing to act to anticipating future situations.  The new model illuminates 

psychological issues about the relations between automatic and deliberative control of action, 

and helps to answer philosophical questions about the nature of intention.  The result, we hope, is 

support for our theory that intentions are semantic pointers that bind together representations of 

situations, emotional evaluations of situations, the doing of actions, and the self.  This account 

serves to unify philosophical, psychological, neuroscientific, and computational concerns about 

intentions.   

 We have made extensive use of Eliasmith’s new idea of semantic pointers, which we 

think is useful for general issues about cognitive architecture and more specific issues about 

intention and action, as well as for computational modeling.   For several decades, there has been 

ongoing debate between advocates of symbolic, rule-based cognitive architectures and advocates 

of neural network architectures (for a survey, see Thagard 2012a). Eliasmith’s Semantic Pointer 

Architecture provides a new synthesis that shows how sufficiently complex neural networks can 

process symbols while retaining embodied information concerning sensory and motor processes, 

with applications that range from image recognition to reasoning.   This synthesis is very helpful 

for understanding how intention-action couplings can operate with both verbal representations 

and sensory-motor ones.   Our computer simulations, especially the fifth one concerning 

implementation intentions, show how neural representations can be combined, stored, and 

replayed. The theory of semantic pointers shows how intentions can bind together 

representations of situations, emotions, actions, and the self in ways that explain how intentions 

can both lead and fail to lead to behavior.   
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 Of course, much remains to be done.  There are numerous psychological and neural 

experiments about intention that we have not yet attempted to simulate, and undoubtedly a richer 

neurological account would introduce more brain areas and connections.  We have only 

scratched the surface in discussing the philosophical ramifications of neural accounts of intention 

and action, and completely neglected the potential implications for robotics. Nevertheless, we 

hope that a specific proposal for empirically plausible brain mechanisms that link intention, 

emotional evaluation, and action will contribute to theoretical progress.       
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Appendix: Neural Modelling 

To construct the computational models shown in this paper, we make use of the Neural 
Engineering Framework (NEF; Eliasmith & Anderson, 2003).  In this approach, we specify a 
type of distributed representation for each group of neurons, and we analytically solve for the 
connection weights between neurons that will produce the desired computations between groups 
of neurons.  While this approach does encompass neural learning techniques (e.g. Stewart, 
Bekolay, & Eliasmith, 2012), we do not use any learning in the models presented here. 
 
More formally, the “patterns” for the various different stimuli (e.g. , OFFER, SMOKE), motor 
actions (e.g. , TAKE), and internal concepts (e.g. WORK, GOOD) are all defined as randomly 
chosen 64-dimensional unit vectors.  This gives a unique randomly-generated vector for each 
concept.  To use these patterns in a neural model, we must define how a group of neurons can 
store a vector using spiking activity, and how this spiking activity can be decoded back into a 
vector. 
 
To define this neural encoding, the NEF generalizes standard results from sensory and motor 
cortices (e.g. Georgopoulos, Schwartz, and Kettner, 1986) that in order to represent a vector, 
each neuron in a population has a random “preferred direction vector” – a particular vector for 
which that neuron fires most strongly.  The more different the current vector is from that 
preferred vector, the less quickly the neuron will fire.  In particular, Eq. 1 gives the amount of 
current J that should enter a neuron, given a represented vector x, a preferred direction vector e, a 
neuron gain α, and a background current b.  The parameters α and b are randomly chosen, and 
adjusting their statistical distribution produces neurons that give realistic background firing rates 
and maximum firing rates (Eliasmith & Anderson, 2003; Figure 4.3).  These parameters also 
impact the model itself; for example, having an overall lower average firing rate means that the 
model will require more neurons to produce the same level of accuracy. 
 
          (Eq. 1) 
 
This current can then be provided as input to any existing model of an individual neuron, to 
determine the exact spike pattern for a particular input vector x.  For this paper, we used the 
standard Leaky Integrate-and-Fire neuron model, which is a simple model that captures the 
behaviour of a wide variety of observed neurons (Koch, 1999, chp. 14).  Input current causes the 
membrane voltage V to increase as per Eq. 2, with neuron membrane resistance R and time 
constant τRC.  For the models presented here, τRC was fixed at 20 ms (Isokawa, 1997).  When the 
voltage reaches a certain threshold, the neuron fires (emits a spike), and then resets its membrane 
voltage for a fixed refractory period.  For simplicity, we normalize the voltage range such that 
the reset voltage to 0, the firing threshold is 1, and R is also 1. 
 

          (Eq. 2) 
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Given Eqs. 1 and 2, we can covert any vector x into a spiking pattern across a group of 
realistically heterogenous neurons.  Furthermore, we can use Eqs. 3 and 4 to convert that spiking 
pattern back into an estimate of the original x value.  This lets us determine how accurately the 
neurons are representing given values.  More neurons leads to higher accuracy.  The idea behind 
Eq. 3 is that we can take the average activity a of each neuron i, and estimate x by finding a fixed 
weighting factor d for each neuron.  Eq. 4 shows how to solve for the optimal d as a least-
squared error minimization problem, where the sum is over a random sampling of the possible x 
values. 
 
           (Eq. 3) 
 

    (Eq. 4) 
 
These two equations allow us to interpret the spiking data coming from our models.  In Figs. 4 
through 8, we take the spike pattern, decode it to an estimate of x, and compare that to the ideal 
vectors for the various concepts in the model.  If these vectors are close, then we add the text 
labels (e.g. WORK, OFFER, TAKE) to the graphs, indicating that the pattern is very similar to 
the expected pattern for those terms. 
 
It should be noted that this produces a generic method for extracting x from a spiking pattern 
without requiring a specific set of x values to optimize over.  That is, we can accurately use d to 
determine if a particular pattern of activity means WORK even though we don't use the WORK 
vector to compute d.  The sums used to compute d in Eq. 4 are over a random sampling of x.  
Since x covers a 64-dimensional vector space and since we use only 5000 samples in that space 
(increasing this number does not affect performance), it is highly unlikely that the sampling 
includes exactly the vector for WORK (or any other semantic pointer), but as shown in the Figs. 
4 through 8, we can still use d to identify the presence of those semantic pointers (or any others). 
 
Importantly, we also use Eq. 4 to compute the connection weights between groups of neurons.  In 
contrast to other neural modelling methods which rely on learning, the NEF optionally allows us 
to directly compute connection weights that will cause neural models to behave in certain ways.  
For example, given two groups of neurons, we can form connections between them that will pass 
whatever vector is represented by one group to the next group by using the connection weights 
given in Eq. 5 (see Eliasmith & Anderson, 2003 for the detailed proof). 
 
          (Eq. 5) 
 
However, simply passing information from one group to another is insufficient to implement the 
transition rules needed for our simulations.  Fortunately, the NEF shows that you can find 
alternate d values to estimate complex nonlinear functions.  That is, instead of simple passing a 
value from one group to another, we can define an arbitary function f(x) and compute df as per 
Eq. 6.  Now, if synaptic connections are formed via Eq. 5, if the first neural population fires with 
the pattern for x, then the connections will cause the second population to fire with a pattern 
representing the result of f(x). 
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    (Eq. 6) 
 
This approach allows us to define the various transition rules given in the paper, and the 
compression/decompression operation (Fig. 2).  The transition rules are converted into a function 
that maps the particular input vectors to particular output vectors.  This function is used to 
compute df (Eq. 6), which is then used to compute the synaptic connection weights (Eq. 5).  The 
model is then run.  To provide input to the model, we generate input current into the sensory 
neurons for the particular sensory stimuli (Eq. 1).  To analyze and interpret the spiking patterns, 
we convert the spikes back into a vector (Eq. 3) and compare it to the ideal vectors for each 
concept. 
 
The compression function used here is circular convolution.  This takes two vectors (x and y) 
and produces a third vector z as per Eq. 7.  This vector z can be thought of as a compressed 
representation of x and y, forming the basis of our semantic pointers.  Importantly, given z and y 
(or x) we can recover an approximation of x (or y) by computing the circular correlation (Eq. 8).  
This is how semantic pointers can be decompressed into their consituants. 
  

          (Eq. 7) 

          (Eq. 8) 
 
In general, it is possible to use the Neural Engineering Framework to build a network where 
there are two input populations (one for x and one for y) and one output population (z) such that 
you can input any two arbitrary vectors and get out their convolution.  Importantly, this will work 
for any input vectors, not just the randomly chosen ones used in the optimization (Eq. 6).  
However, for the simulations described here, we use a simpler method where a particular neural 
connection always convolves its input vector x with a fixed vector.  For example, the connection 
from the sensory area to the memory area in Fig. 9 computes the function f(x)=x*SENSORY 
where * is the circular convolution and SENSORY is a randomly chosen semantic pointer vector.  
The synaptic connection weights computed using this function and Eqs. 5 and 6 result in a 
spiking neural network that accurately combines information into a single memory semantic 
pointer regardless of what particular vector x is provided to the sensory system.  A similar 
function is defined for the other connections into the memory system, resulting in a final 
semantic pointer of x*SENSORY+y*ACC+z*SMA+w*PFC.  To decompress this semantic 
pointer, we use a circular correlation instead (Eq. 8). 
 
 
 
 
 
 
 
 
 


